IOWA STATE UNIVERSITY Digital Repository

[Retrospective Theses and Dissertations](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Iowa State University Capstones, Theses and](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Dissertations](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages)**

1986

Chemistry of tungsten theocarbyne and thiocarbene complexes: Syntheses and structures of [HB(pz)3](CO)2(CS)W-Au(PR3) complexes, first examples of a semibridging CS ligand

Heesook Park Kim *Iowa State University*

Follow this and additional works at: [https://lib.dr.iastate.edu/rtd](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Inorganic Chemistry Commons](http://network.bepress.com/hgg/discipline/137?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Kim, Heesook Park, "Chemistry of tungsten theocarbyne and thiocarbene complexes: Syntheses and structures of [HB(pz)3](CO)2(CS)W-Au(PR3) complexes, first examples of a semibridging CS ligand " (1986). *Retrospective Theses and Dissertations*. 8090. [https://lib.dr.iastate.edu/rtd/8090](https://lib.dr.iastate.edu/rtd/8090?utm_source=lib.dr.iastate.edu%2Frtd%2F8090&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which may appear on this reproduction.

- 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.
- 2. When copyrighted materials are removed from the manuscript, a note appears to indicate this.
- 3. Oversize materials (maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. *
- 4. Most photographs reproduce acceptably on positive microfilm or microfiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

***For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.**

UMI Dissertation

UMI Information Service

University Microfilms International A Bell & Howell Information Company 300 N. Zeeb Road. Ann Arbor, Michigan 48106

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

8627125

Kim, Heesook Park

CHEMISTRY OF TUNGSTEN THIOCARBYNE AND THIOCARBENE COMPLEXES. SYNTHESES AND STRUCTURES OF (HB(PZ)(3))(CO)(2)(CS)W-AU(PR(3)) COMPLEXES, FIRST EXAMPLES OF A SEMIBRIDGING CS LIGAND

Iowa State University **PH.D.** 1986

 $\ddot{}$

University Microfilms **International** 300 N. Zeeb Road, Ann Arbor, MI 48106 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \checkmark \checkmark .

- 1. Glossy photographs or pages
- 2. Colored illustrations, paper or print
- 3. Photographs with dark background
- 4. Illustrations are poor copy
- 5. Pages with black marks, not original copy
- 6. Print shows through as there is text on both sides of page
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements
- 9. Tightly bound copy with print lost in spine ________
- 10. Computer printout pages with indistinct print
- 11. Page(s) _________ lacking when material received, and not available from school or author.
- 12. Page(s) seem to be missing in numbering only as text follows.
- 13. Two pages numbered ______. Text follows.
- 14. Curling and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

University Microfilms International

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

Chemistry of tungsten thiocarbyne and thiocarbene complexes. Syntheses and structures of $[HB(pz)₃](CO)₂(CS)W-Au(PR₃)$ complexes, first examples of a semibridging CS ligand

by

Heesook Park Kim

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department: Chemistry Major: Inorganic Chemistry

Approved :

Signature was redacted for privacy.

In Charge of Majou Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

1986

TABLE OF CONTENTS

 \mathcal{L}_{max}

 \sim

 \overline{a}

DEDICATION

To my mother and father

 $\ddot{}$

PREFACE

One of the most important developments in organotransition-metal chemistry was the discovery of carbene and carbyne complexes. The growth of carbene and carbyne chemistry has been partially sparked by interest in olefin and acetylene metathesis and Fischer-Tropsch synthesis in which metal carbenes and carbynes are postulated as key intermediates. Another field of interest in organometal1ic chemistry is that of thiocarbonyls; the similarity of carbon monosulfide (CS) to CO has stimulated much interest in the synthesis and reactivity of CS complexes. The present research includes chemistry of thiocarbyne, n^2 -thiocarbene, and thiocarbonyl compounds.

The material in this dissertation is arranged so that a minimum of rewriting is required for preparation of manuscripts for publication. Reported in this dissertation is research on the protonation of $[HB(pz)₃](CO)_{2}W(\equiv CSMe)$ which produces an unusual n^{2} -CH(SMe) carbene ligand, whose subsequent reactions with nucleophiles yield metallacyclopropane ring compounds containing W and S. As background for these studies, Section I provides a literature review of n^2 -carbene and metallacyclopropane compounds.

Sections II, III, and IV are composed of articles which have been submitted for journal publication. These sections include results of this dissertation research concerning reactivities of $[HB(pz)₃](CO)₂W(≡CSMe)$, $[HB(pz)₃](CO)₂W[n^2 -CH(SMe) I^+ , and$ $[HB(pz)_{3}]$ (CO)₂W(CS)⁻.

1

References and figures apply only to those contained within that section.

 ~ 10

SECTION I. n^2 -CARBENE AND S, O, P, AND N CONTAINING METALLACYCLOPROPANE COMPOUNDS

n^2 -CARBENE LIGANDS

As compared with n^1 -carbenes, n^2 -carbene complexes are rare. One example is the $\lceil n^2 - C(SMe)(NMe_2) \rceil$ carbene ligand, which is prepared by methylation of the thiocarboxamido moiety, n^2 -C(S)(NMe₂), according to eq 1.¹ An X-ray structural investigation of $(PPh₃)(CO)₃Mn[_n²-$

 $C(NMe₂)$ (SMe)]⁺ shows that the C_{carbene}-S distance in the $n²$ -carbene compound (1.78 Å) is 0.1 Å longer than that of the analogous n^1 carbene compound $(CH_3NC)_2Pt[=C(SET)(NHCH_3)]_2^{2+}$.² Thus, it seems that in the n^2 -carbene complex there is less $C-S$ π bonding and more metalcarbon π bonding than in the n^1 -carbene compound. The reduction of C- $S \pi$ bonding is probably due to S-coordination to the metal which would make less electron density available for π -bonding to the C.

Another n^2 -thiocarbene compound is prepared by methylation of an n^2 -thioacyl compound, according to eq 2.³ Subsequent conversion of the n^2 -carbene to an n^1 -carbene occurs by addition of CI⁻ (eq 2).³

Addition of K[PPh(Me)] to $(C0)_{\pi}W(\equiv CNEt_{2})^{+}$ yields among other products a carbene complex $[H(Me)PhP](CO)_{d}W[=C(NEt_{2})(PPhMe)]$, which upon thermolysis eliminates the trans phosphine ligand to give a metallacyclic carbene complex (eq 3).⁴ The $C_{carbene}$ -N distance,

$$
(CO)_{5}W(\equiv CNEt_{2})^{+} \xrightarrow{K[PPh(Me)]} [H(Me)PhP](CO)_{4}W[=C(NEt_{2})(PPhMe)]
$$
\n
$$
\xrightarrow{-PPh(Me)H} (CO)_{4}W_{\text{C}} \xrightarrow{PPhMe}
$$
\n(3)

1.28(1) λ ;^{4a} is close to that (1.28(2) λ) in (PPh₃)(CO)₃Mn[n²- $C(NMe₂)(SMe)¹⁺,²$ and significantly shorter than C-N single bond distances (N-CH₃ = 1.49(3) Å, 1.54(3) Å) in (PPh₃)(C0)₃Mn[n²- $C(NMe_2)(SMe)^T$ ⁺.² This suggests some π -interaction between the C and N.

NEt₂

n^-CHgSMe LIGANDS

A number of transition metal compounds containing the $CH₂SMe$ ligand have been prepared;⁵ three coordination modes are possible for the CH₂SMe group, as shown below.⁶ The CH₂SMe group can form a σ

complex bonding only through the C atom as in (a) or an n^2 -complex containing both the metal-carbon a bond and a sulfur donor bond as in (b). The (a) and (b) bonding modes can be differentiated by the pattern of the methylene protons in their $¹H$ NMR spectra; the two</sup> methylene protons in (a) are equivalent but nonequivalent in (b). The (c) type of bonding is a possible resonance form of the n^2 -bonding mode for the CH₂SMe group. It is impossible to establish the contribution of resonance forms (b) and (c) to the bonding in n^2 -CH₂SMe complexes; however, a S-CH₂ distance which is shorter than the $S-CH₃$ distance suggests a contribution of the type (c) resonance structure.

Reaction of metal anion and ClCH₂SMe Treatment of NaMo(CO)₃Cp with ClCH₂SMe at room temperature gives the n^1 , σ -bonded CH₂SMe compound Cp(CO)3Mo(CH₂SMe). Upon heating or ultraviolet irradiation, this complex loses CO to give $Cp(C0)_{2}$ Mo($n^{2}-CH_{2}$ SMe) with $CH_{3}SCH_{2}$ group

bonded to the metal atom through the C and S atoms (eq 4).⁷ The analogous (CO)₄Mn(n^2 -CH₂SMe) can also be prepared by reaction of

$$
Cp(CO)_{3}M^{-} + C1CH_{2}SMe \longrightarrow Cp(CO)_{3}Mo-CH_{2}SMe
$$
\n
$$
\frac{\Delta}{\Delta V} \times Cp(CO)_{2}Me
$$
\n
$$
M = Mo, W
$$
\n(4)

 $Mn(CO)_{5}^-$ and CICH₂SMe.^{7b} An X-ray diffraction study of Cp(CO)₂Mo(n²-CH₂SMe) shows that the CH₂SMe moiety is best represented by the (b) type of coordination mode $[CH_2-S = 1.78(1)$ Å, S-CH₃ = 1.82(1) Å)].⁸

Similarly, the reaction of $[Me_2Ga(N_2C_3HR_2)(OCH_2CH_2NMe_2)]Mo(C0)_3$, R = H, Me, with CICH₂SMe produces the corresponding n^2 -CH₂SMe compound.⁹ The CH₂-S distances in the complexes, $R = H$, Me, are 1.744 and 1.756 Â, respectively; whereas the S**-CH3** distance is 1.804 Â and 1.802 Å, respectively. The shorter CH_2-S distance suggests a contribution of the (c) type of resonance structure.

Oxidative addition of CICH₂SMe The oxidative addition of CICH₂SMe to Pd(PPh₃)₄ affords an n^1 -CH₂SMe compound. Repeated crystallization of the n^1 compound in CH₂Cl₂ and diethyl ether affords the n^2 -CH₂SMe compound through loss of PPh₃ in accordance with equilibrium shown below (eq 5). 10 An X-ray diffraction study of

$$
PdL_4 + C1CH_2SMe \longrightarrow L_2Pd(CH_2SMe)(Cl) \xleftarrow{-PPh_3} L_2Pd_RH_2
$$
\n
$$
L = PPh_3
$$
\n
$$
(5)
$$

(PPh₃)(Cl)Pd(π^2 -CH₂SMe) shows that the CH₂SMe group, bonded to the Pd atom through both C and S atoms, forms a metallacyclic three-membered ring.¹¹ The S-CH₂ bond distance, 1.756(6) Å, is slightly shorter than that of the S-CH₃ bond distance, $1.807(7)$ Å.

Treatment of the n^1 -CH₂SMe compound, (PPh₃)₂Pd(CH₂SMe)(C1) with NH_4PF_6 or AgClO₄ yields the cationic complexes $[(PPh_3)_2Pd(\pi^2-CH_2SMe)]X$ $(X = PF_6, ClO_4)$ according to eq 6.⁶ X-ray structure investigations of

$$
L_{Pd}^{CH_2SMe} + X^{+}Y^{-} \longrightarrow [L_{2}Pd(CH_2SMe)]Y + XC1
$$
 (6)

$$
X^+Y^- = NH_{\mathcal{A}}PF_{\mathcal{A}}, AGClO_{\mathcal{A}}
$$

both compounds show that the PF_{6}^- salt has a stronger ion-pair interaction than the ClO_4^- salt;⁶ despite the larger size of PF_6^- (P-F = 1.54 Å) than $C10₄$ (Cl-0 = 1.42 Å), the Pd ••• P distance, 4.759 Å, in the PF $_6^-$ salt is significantly shorter than Pd-Cl distance (5.317 Å) in the ClO₄" salt. In the PF₆" salt, the CH₂SMe group is bonded to the Pd through both the C and S atoms, forming a Pd-C-S three-membered \cdot ring $[Pd-CH_2 = 2.06(4)$, $Pd-S = 2.367(8)$, $CH_2-S = 1.77(4)$, and S-CH₃ = 1.78(4) Å].⁶ On the other hand, the n^2 -CH₂SMe group in the C1O₄⁻ salt is coordinated to Pd in a type (c) manner with essentially a C=S double bond (CH₂-S = 1.68(1) Å) as compared with the S-CH₃ bond $(1.86(4)$ Å).⁶ The contribution from (c) seems greater in the ClO₄⁻ salt than in the PF_6^- salt. This difference may be due to the counter anions.

A similar oxidative addition of ClCH₂SMe to Ni(PPh₃)₂(C₂H₄) produces $(PPh_3)(C1)Ni(n^2-CH_2SMe).¹²$

Methylation of $L_nM(\eta^2-CH_2X)$, $X = S$, Se, Te The methylation of n²-chalcogenoformaldehyde ligands is a useful method for the preparation of complexes containing n^2 -CH₂XMe, $X = S$, Se, and Te.¹³ For example, methylation of $(C0)_2(PPh_3)_2Os(\eta^2-CH_2X)$ yields $(C0)_2(PPh_3)_2Os(n^2-CH_2XMe)^+$ according to eq 7.¹³ A similar methylation

$$
(CO)_{2}(PPh_{3})_{2}OS \xrightarrow{\text{CH}_{2}} H_{2} + MeY \xrightarrow{\text{MeY}} (CO)_{2}(PPh_{3})_{2}OS \xrightarrow{\text{CH}_{2}} X^{Me^{+}} Y^{-}
$$
(7)

$$
x = S
$$
 ; $Y = CF_3SO_3$
 $x = Se$, Te; $Y = I$

is observed in the reaction of $Cp(PMe₃)Rh(n²-CH₂X)$, X = S, Se, with $CF₃SO₃Me$ to give $Cp(PMe₃)Rh(n²-CH₂XMe)⁺.¹⁴$

Reaction of η^2 -CH₂SMe ligands . The reaction of

(PPh₃)(Cl)Pd(n²-CH₂SMe) with NaS₂CNMe₂ converts the n²-CH₂SMe to n¹-CH₂SMe according to eq 8.^{10a} A similar conversion of π^2 -to π^1 -CH₂SMe

$$
L_{pd}C_{1}^{CH_{2}} + \text{NaS}_{2}C_{1}^{C_{1}^{H}C_{2}} \longrightarrow L_{pd}^{S_{2}^{H}C_{2}^{H}C_{1}^{H}C_{2}^{H}C_{2}^{H}C_{2}^{H}C_{2}^{H}C_{2}^{H}C_{2}^{H}C_{3}^{H}C_{4}^{H}C_{5}^{H}C_{6}^{H}C_{7}^{H}C_{8}^{H}C_{9}
$$

is observed in the reaction of $(C0)_2(PPh_3)_2Os(n^2-CH_2SMe)^+$ with CI⁻, affording $(C0)$ ₂(PPh₃)₂Os(Cl)(n¹-CH₂SMe).^{13a}

Reaction of $(C0)_2(PPh_3)_2Os(n^2-CH_2XMe)^+$, X = Se, Te, with BH₄ leads to cleavage of the C-X bond, yielding $(C0)_2(PPh_3)_2Os(CH_3)(XMe)$ (eq **9).**13c This surprising reaction perhaps suggests that the CH2XMe

moiety might have some carbene character as in the form $L_p0s(=CH_2)(XMe)$ (eq 10).^{13c} The CH₂ carbene ligand should be very

susceptible to BH^{-}_{4} attack which would be expected to give the observed CH_3 product (eq 9).

Preparation of $L_nM[n^2-C(SR)(R^+)$ (SR")] complexes In a reaction \sin inilar to that (eq 7) of π^2 -chalcogenoformaldehyde complexes, the π^2 -. dithioester complexes mer-(dppe)(CO)₃W[n²-C(=S)H(SR)] react with alkylating agents to produce three-membered ring compounds according to eq 11.¹⁵ The similar conversion of an n³-dithioester compound to a three-membered ring compound is also observed (eq 12). 16

n^-CHROR' LIGAND

Saturated three-membered ring complexes with oxygen, n^2 -CHROR', are rare as compared with those with N, S, or P. Such a compound is prepared by reaction of Cp(CO)3Mo[CH2(CH2)2Br] with LiEt3BH (eq 13). 17 The reaction was proposed to initially generate an acyl

$$
Cp(C0)_{3}Mo \longrightarrow Br + LiEt_{3}BH \longrightarrow
$$

\n
$$
[Cp(C0)_{2}(H)Mo-C-CH_{2}CH_{2}CH_{2}Br^{-}] \longrightarrow Cp(C0)_{2}Mo \longrightarrow Br^{-}
$$
 (13)

intermediate which would undergo ring closure followed by hydride migration from Mo to the carbene center to give the final product. 17 Alternatively, hydride migration from Mo to the acyl carbon followed by ring closure would result in the observed product. This threemembered ring compound can also be prepared by reaction of $Cp(C0)_2(I)Mo(\equiv \stackrel{CCH}{CCH}_2CH_2CH_2O)$ with LiBEt₃H.¹⁷

n^2 -CH₂PR₂ LIGANDS

Three coordination modes are known for the CH_2PR_2 group, as shown below; they are the $n^2-(d)$, 18 $n^1-(e)$, 19 or bridging-(f) modes. 20

Crystal structures of compounds with the n^2 -CH₂PMe₂ ligand, Re(PMe₃)₄(n²-CH₂PMe₂),²¹ Ta(PMe₃)₃(n²-CH₂PMe₂)(n²-CHPMe₂)²², and $W(PMe₃)₄(\pi^2-CH₂ PMe₂)H₂²³$ reveal a common feature; the metallacycle P-C bond is shorter than that in terminal $PMe₃$ ligands by 0.08 Å. It would appear that the bonding in η^2 -CH₂PMe₂ compounds is best understood in terms of the following resonance forms:

Reactions of metal chlorides with LiCH₂PMe₂ afford n^2 -CH₂PMe₂ compounds according to eq 14.24

$$
L_nM-C1 + LiCH_2PMe_2 \longrightarrow L_nM_{CH_2}PMe_2
$$
 (14)

 $M = L_3Co, L_2(C0)Co, L_3Ni^+, L_3(H)Fe, L_3(Me)Fe, L_2(Me)_{2}Co; L = PMe_3$

Intramolecular oxidative addition of a PMe₃ C-H bond to a metal also leads to three-membered ring compounds. For example, sodium amalgam reduction of FeCl₂(PMe₃)₂ in the presence of excess PMe₃ at 0°C produces a product having the empirical formula $Fe(PMe₃)₄$. As a result of intramolecular C-H fission, this product exists in solution almost completely as $Fe(H)(\eta^2-CH_2PMe_2)(PMe_3)_4$ (eq 15).^{24b,25} However,

$$
\text{Me}_{\text{Me}_{3}}\text{Me
$$

2 NMR spectral evidence suggests a slow equilibrium between the two isomers.^{25,26} Supporting this equilibrium is the reaction of 2 with H₂ which gives H₂Fe(PMe₃)₄ in 70% yield.^{25,27} Also, ligands favoring a low oxidation state for Fe shift this equilbrium to give complexes Fe(PMe₃)₃L₂ (L = PF₃, CO, P(OMe)₃).²⁷ Recently, analogous Os and Ru compounds $MH(n^2-CH_2PMe_2)(PMe_3)_4$ have also been prepared by reduction of $MC1_2(PMe_3)_4$ in the presence of PMe_3 . $23,28$

Similarly, reduction of Re(NPh)(Cl)₃(PMe₃)₂ in the presence of PMe₃ yields $Re(\eta^2 - CH_2PMe_2)(PMe_3)_4$.²¹ Irradiation of CpRe(PMe₃)₃ in cylcohexane leads to cyclometalation, producing C_p Re(H)(n^2 - CH_2 PMe₂)(PMe₃) according to eq 16.²⁹

$$
CpRe(PMe3)3 \xrightarrow{h\nu} Cp(PMe3)1Re H PMe2 + PMe3
$$
 (16)

The Mo compound Mo(PMe₃)₆ undergoes spontaneous dissociation of a PMe₃ ligand in benzene solution, forming Mo(PMe₃)₄(n²-CH₂PMe₂)H (eq 17).³⁰ The analogous W(PMe₃)₄(π^2 -CH₂PMe₂)H can be prepared by

$$
M(PMe_3)_{6} \quad \xleftarrow{\text{M}(PMe_3)}_{4} (n^2 - CH_2 PMe_2)H + PMe_3 \tag{17}
$$

reduction of WCl₆ by sodium-potassium alloy in pure PMe₃.^{23,31} There is no evidence for the presence of $W(PMe₃)₆$ in a benzene solution of $W(PMe₃)_{4}(\eta^2 - CH_2PMe_2)H$ containing an excess of free PMe₃. The shift of the equilibrium in eq 17 to the right-hand side for tungsten reflects the greater stability of the higher oxidation state for tungsten compared to molybdenum. 31

In contrast, the phosphinomethyl group frequently binds to early transition metals in an n^1 -manner (eqs 18, 19).^{24a, 32}

$$
Cp_2MC1_2 + LiCH_2PR_2 \longrightarrow Cp_2(Cl)M(CH_2PR_2)
$$
 (18)

$$
Cp2MC12 + 2LiCH2PR2 \longrightarrow Cp2M(CH2PR2)2
$$
 (19)
M = Ti, Zr; R = Me, Ph

In spite of the presence of a lone pair on phosphorus and coordinative unsaturation at the metal, no bonding interaction between M-P, $M = Ti$, Zr, exists. Theoretical studies of the model system $Cp_2Zr(C1)(n^1 CH_2PH_2$) suggest three structural minima g, h, and j (eq 20).³³ The

large P **** Zr non-bonding distance and the 130° Zr-C-P angle in $Cp_2Zr(C1)(n^1-CH_2PPh_2)^{32a}$ are reproduced well in structure h and are explained by a strong P-Zr repulsive electronic interaction that exists in this geometry. The three-membered ring species (g and j) are actually calculated to be more stable than the π^1 -form, although g and j are not observed. An electronic barrier separates h from g, while conversion to j requires rotation to i, which is not a local energy minimum, and should collapse directly to the Zr-P bonded structure. Assuming the validity of the calculations, the lack of Zr-P bonding in $Cp_2Zr(C1)(\eta^1-CH_2PPh_2)$ is probably due both to these barriers to structural interconversion and to steric destabilization of the three-membered ring species by the substituents on phosphorus. The electronic barrier is found to vanish upon reduction of the metal and loss of chloride ion. Thus reducing $Cp_2M(C1)(n^1-$ CH₂PPh₂) and Cp₂M(n¹-CH₂PPh₂)₂, M = Ti, Zr, gives Cp₂M(n²-CH₂PPh₂) and Cp₂M(n²-CH₂PPh₂)₂, respectively;^{20b,32a,34} EPR spectra show a strong coupling of the unpaired electron to phosphorus, demonstrating the presence of the n^2 -CH₂PPh₂ ligand in these reduced compounds. Similarly, one-electron reduction of $\text{Cp}_2\text{Zr}(\text{C1})(\pi^1-\text{CH}_2\text{PMe}_2)$ produces a persistent P-bound $2r(III)$ species.³⁵ In contrast, reduction of (C_5Me_2) ₂Zr(Cl)(π^2 -CH₂PPh₂) gives a Zr(III) species lacking appreciable Zr-P interaction; permethyl substitution on the Cp rings sterically prohibits Zr-P bonding, even when it might be strongly favored electronically.³⁵

Reduction of $TaCl₅$ in excess PMe₃ with sodium sand under argon gives $Ta(PMe₃)₃(n²-CH₂PMe₂) (n²-CHPMe₂)$. An X-ray structural determination of the product shows that the n^1 -CHPMe₂ is best represented as a carbene-like interaction;^{22,23} the Ta-Ccarbene distance is 2.015 Å, whereas the Ta-CH₂ distance is 2.324 Å.

Deprotonation of PMe₃ can also lead to formation of the threemembered ring; reaction of cis-Ru(0_2 CMe)(Cl)(PMe₃)₄ with 1 or 2 molar equivalents of $N(SiMe₃)₂$ gives $Ru(n^2-CH_2PMe₂)(C1)(PMe₃)₃$ (eq 21).^{20c} Similarly, the reaction of cis-Ru(0₂CMe)₂(PMe₃)₄ with 2 equivalents of $N(Sim_e_3)_2$ yields $Ru(n^2-CH_2PMe_2)_2(PMe_3)_2$.

cis=Ru(0₂CMe)(Cl)(PMe₃)₄ + N(SiMe₃)₂
$$
\longrightarrow
$$
 $\begin{array}{c} Me_3P\\ Me_3P\end{array}$ $\begin{array}{c} PMe_2\\ Ru\\ Re_3P\end{array}$ (21)

Interestingly, the reaction of Ph₂PSiMe₃ with (CO)₅MnR also leads to the formation of a three-membered ring (eq 22); 36 in this transformation, **CO** insertion and silicon-oxygen bond formation seem to be driving forces for the reaction.

Reactions of the n^2 -CH₂PR₂ ligand The reaction of $(PMe₃)₃Co(n²-CH₂PMe₂)$ with [Me₃PH]Cl results in the replacement of the

$$
\pi^2-\text{CH}_2\text{PMe}_2 \text{ group to give } (\text{PMe}_3)_3\text{CoCl} \text{ (eq 23)}^{-24b}
$$
\n
$$
(\text{PMe}_3)_3\text{Co}(\pi^2-\text{CH}_2\text{PMe}_2) + [\text{Me}_3\text{PH}]C1 \longrightarrow (\text{PMe}_3)_3\text{CoCl} + 2\text{PMe}_3 \quad (23)
$$

The spirocycle Ru(PMe₃)₂(π^2 -CH₂PMe₂)₂ reacts with H₂ to give cis-RuH₂(PMe₃)₄.^{20c} Reaction of W(PMe₃)₄(π^2 -CH₂PMe₂)H with H₂, SiH₄, and HF gives $x_2W(PMe_3)$ ₅, X = H, SiH₃, and F, respectively.³¹ The compound 0 s(PMe₃)₃(n²-CH₂PMe₂)(H) reacts with Brønsted acids, HX (X = C1, CF_3CO_2), to give Os(PMe₃)₄X₂.^{28b}

Methyl iodide reacts with M(PMe₃)₃(n^2 -CH₂PMe₂)H, M = Os, Ru, to give a product which retains the three-membered ring, as well as $M1₂(PMe₃)₄$ (eq 24).²⁸

$$
M(PMe3)3(\pi2-CH2PMe2)H + CH3I
$$
\n
$$
M(PMe3)3(\pi2-CH2PMe2)I + cis-MI2(PMe3)4
$$
\n(24)

$$
M = Ru, Os
$$

However, the reaction of $Re(\eta^2 - CH_2PMe_2)(PMe_3)_4$ with Mel differs from eq 24 in producing a cation (eq 25); the n^2 -CH₂PMe₂ group is lost, presumably as $PMe_2Et.^{21}$

$$
Re(\pi^{2}-CH_{2}PMe_{2})(PMe_{3})_{4} + CH_{3}I \longrightarrow
$$
\n
$$
[PMe_{4}]I + [ReI(Me)(PMe_{3})_{4}]I - [PMe_{4}]I
$$
\n
$$
(25)
$$

The compound $0s(PMe_3)_{3}(n^2-CH_2PMe_2)$ H reacts with methyl alcohol to give $(PMe_3)_4$ OsH₂.^{28b} Addition of methanol to W((PMe₃)₄(n²-CH₂PMe₂)H gives the n^2 -formaldehyde derivative W(PMe₃)₄(n^2 -CH₂0)H₂ by

dehydrogenation of methanol (eq 26). 37 It is proposed that the

$$
L = PMe3
$$
\n
$$
L = PMe3
$$
\n(26)

reaction proceeds via initial oxidative addition of MeOH to the starting compound to give the intermediate $W(PMe₃)₅(Me0)$ H or $W(PMe₃)₅(CH₂OH)H$, followed by loss of $PMe₃$ and intramolecular oxidative addition of the C-H bond of the methoxy group, or 0-H bond of the hydroxymethyl group.

nZ-CHgNMSg LIGANDS

Theoretical studies of the iminium cation $H_2C=NMe_2^+$ indicate that there is nearly full double bond character between the C and N atoms.³⁸ Compared to olefins, which are generally considered 2e⁻ π donors, iminium ions can have three possible bonding modes.

The iminium cation acts as a σ -bonded monodentate ligand in (k) or as a 2e^{$-$} π -donor in (1). The (m) resonance structure can possibly contribute to the n^2 -bonding of the CH₂NMe₂ ligand, as in the cases of n^2 -CH₂SMe and CH₂PR₂ bonding. However, the contribution of (1) in n^2 - $\frac{1}{2}$ + $\frac{1$ CH₂NMe₂ probably plays a greater role than CH₂=SMe and CH₂=PR₂ in η ²-CH₂SMe and n^2 -CH₂PR₂ bonding, respectively.

Reaction of $[CH_2=NMe_2]Br$ with (CO)CuCl produces $[(Me₂N=CH₂)Cu(Cl)]Br$, in which the iminium cation is considered to act as a π -type ligand based on its $\sqrt{(C=N)}$ frequency of 1600 cm^{-1} (eq $27)$. 39

$$
[H_2C=NMe_2]Br + (CO) CuCl \longrightarrow \bigcup_{M \in N_{\text{me}}}\begin{array}{c} H_{cr}^{\text{me}} & H_{cr}^{\text{me}} \\ H_{\text{me}} & Br \end{array}
$$
 (27)

Similarly, reaction of $(CH_2=CH_2)Ni(PPh_3)_2$ with $[CH_2=NMe_2]X$ (X = Cl, Br, I) affords $(PPh_3)Ni(CH_2=NMe_2)(X)$, $X = C1$, Br, and I, according to eq 28.⁴⁰ An X-ray structural determination of the Cl product shows the complex can be considered a trigonally coordinated molecule with the iminium cation bonded in a π -fashion to the Ni atom; 40 the

$$
Ph_{3}P_{Ni} + \prod_{CH_{2}}^{CH_{2}} + [CH_{2} = NMe_{2}]X \longrightarrow Ph_{3}P_{Ni} + \prod_{N=1}^{CH_{2}} \t (28)
$$
\n
$$
X = C1, Br, I
$$
\n(28)

geometry of the bound iminium cation is very similar to that of other T -complexes, e.g., $(PPh_3)_{2}Ni(C_2H_4)$ and $[(cyclohexy1)_{3}P]Ni(C_2H_4)_{2}.^{40}$ The C=N bond length in the compound $(1.392(6)$ Å) increases over that of the uncomplexed ion by 0.09 Â; the decrease in C=N multiple bond character upon coordination to the metal atom is ascribed to π backdonation from the metal.⁴⁰

The organotin reagent $R_2NCH_2SnMe_3$ can be used as a precursor for the CH₂=NR₂⁺ ligand; reaction of M(CO)₅Br, M = Mn, Re, with R₂NCH₂SnMe₃ produces (CO)₄Mn(CH₂=NR₂) according to eq 29.⁴¹ Reaction

$$
M(C0)_{5}Br + R_{2}NCH_{2}SmMe_{3} \longrightarrow (CO)_{4}M + \int_{NR_{2}}^{CH_{2}} + Me_{3}SnBr + CO
$$
 (29)
\n
$$
M = Mn, Re
$$
\n
$$
R = Me, Et, Pr
$$

of $Mn₂(CO)_{10}$ with R₂NCH₂SnMe₃ leads to the same product (C0)4Mn(CH2=NR2) according to eq **30.**An X-ray structural

$$
R_{2}NCH_{2}SmMe_{3} + Mn_{2}(CO)_{10} + (CO)_{4}Mn + \frac{CH}{NR_{2}} + (Me_{3}Sn)Mn(C0)_{5} + CO
$$
 (30)

investigation of $(CO)_{A}Mn(CH_{2}=NCH_{2}CH_{2})$ suggests that the $CH_{2}=NCH_{2}CH_{2}$ ligand π -bonds to the Mn. The C-N bond length C=N (1.45 Å) in the compound is approaching that of a single C-N bond, suggesting high π acidity of the ligand. 41

The aforementioned $(PPh_3)Ni(CH_2=NMe_2)(C1)$ reacts with Cp⁻ to give CpNi(n^1 -CH₂NMe₂)(PPh₃) according to eq 31.40

$$
\begin{array}{ccc}\n\text{Ph}_{3}P_{\text{Ni}} & \text{CH}_{2} & + \text{Cp}^{-} & \text{---} & \text{CpNi} \left(\pi^{1} - \text{CH}_{2}N \text{Me}_{2} \right) (\text{PPh}_{3}) \\
\text{C}T & \text{Me}^{N} \text{Me} & & \\
\end{array}
$$
\n(31)

Reactions of metal carbonyl anions with $[CH_2NMe_2]X$ can give LnM(n^1 -CH₂NMe₂) complexes. CpFe(CO)₂(n^1 -CH₂NMe₂) is prepared by reaction of CpFe(CO)₂⁻ with [CH₂=NMe₂]X, X = C1, Br, I (eq 32).⁴² Photolysis of CpFe(CO)₂(n¹-CH₂NMe₂) results in evolution of CO with the formation of the n^2 -CH₂NMe₂ compound according to eq 32.⁴²

$$
CpFe(C0)_{2}^{+} + [CH_{2}=NMe_{2}]X + Cp(C0)_{2}Fe-CH_{2}NMe_{2} \xrightarrow{hv}
$$

\n
$$
Cp(C0)_{2}Fe\left(\frac{CH_{2}}{NMe_{2}}\right)
$$
 (32)

Similarly, the reactions of CpM(CO)₃, M = Mo, W, with [CH₂=NMe₂]I afford CpM(CO)₃(π^1 -CH₂NMe₂).⁴³ Conversion of π^1 -to- π^2 -CH₂NMe₂ occurs by refluxing a light petroleum solution of $CpMo(C0)_{3}(n^{1}-CH_{2}NMe_{2})$ to

give $\text{CpMo}(\text{CO})_2(\pi^2-\text{CH}_2\text{NMe}_2).^{43}$ An $\pi^2-\text{CH}_2\text{NMe}_2$ compound can be obtained directly by treatment of $(\text{CH}_3\text{CN})_3$ M $(\text{CO})_3$, M = Mo, W, with $[\text{Me}_2\text{N}=\text{CH}_2]$ I to yield $(C0)_{3}(CH_{3}CN)(I)M(\pi^{2}-CH_{2}NMe_{2})$ according to eq 33.⁴³

$$
(CH3CN)3M(C0)3 + [Me2N=CH2]I + (CO)3(CH3CN)(I)MCh2NMe2
$$
 (33)

REFERENCES

- 1. (a) Treichel, P. M.; Dean, W. K. J. Chem. Soc., Chem. Commun. 1972, 804. (b) Dean, W. K.; Treichel, P. M. J. Orqanometal. Chem. 1974, *66,* 87.
- 2. Dean, W. K.; Wetherington, J. B.; Moncrief, J. W. Inorq. Chem. 1976, 15, 1566.
- 3. Clark, G. R.; Collins, T. J.; Marsden, K.; Roper, W. R. J. Orqanometal. Chem. 1983, 259, 215.
- 4. (a) Fischer, E. 0.; Reitmeier, R.; Ackermann, K. Anqew. Chem., Int. Ed. Engl. 1983, 22, 411. (b) Fischer, E. O.; Reitmeier, R. Z. Naturforsch., B: Anorq. Chem., Org. Chem. 1983, 38B, 582.
- 5. Omae, I. Coord. Chem. Rev. 1979, 28, 97.
- 6. Miki, K.; Kai, Y.; Yasuoka, N.; Kasai, N. Bull. Chem. Soc. Jpn. 1981, **54,** 3639.
- 7. (a) King, R. B.; Bisnette, M. B. J. Am. Chem. Soc. 1964, 86, 1267. (b) King, R. B.; Bisnette, M. B. Inorq. Chem. 1965, 4, 486.
- 8. de Gil, P. M.; Dahl, L. F. <u>J. Am. Chem. Soc.</u> 1969, <u>91</u>, 3751.
- 9. Chong, K. S.; Retting, S. J.; Storr, A.; Trotter, J. Can. J. Chem. 1980, 58, 1080.
- 10. (a) Yoshida, G.; Matsumura, Y.; Okawara, R. J. Orqanomet. Chem. 1975, 92, C53. (b) Yoshida, G.; Kurosawa, H.; Okawara, R. J. Orqanomet. Chem. 1976, 113, 85.
- 11. Miki, K.; Kai, Y.; Yasuoka, N.; Kasai, N. J. Orqanomet. Chem. 1977, 135, 53.
- 12. Davidson, J. G.; Barefield, E. K.; Van Derveer, D. G. Organometallics 1985, 4, 1178.
- 13. (a) Collins, T. J.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1977, 901. (b) Collins, T. J.; Roper, W. R. J. Orqanomet. Chem. 1978, 159, 73. (c) Headford, C. E. L.; Roper, W. R. J. Orqanomet. Chem. 1983, 244, C53.
- 14. (a) Paul, W.; Werner, H. Anqew. Chem., Int. Ed. Engl. 1983, 22, 316. (b) Werner, H. Anqew. Chem., Int. Ed. Engl. 1983, 22, 927.
- 15. Schenk, W. A.; Schwietzke, T. Organometallies 1983, 2, 1905..
- 16. Schenk, W. A.; Rub, 0.; Burschka, C. Angew. Chem., Int. Ed. Engl. 1985, 24, 971.
- 17. Adams, H.; Bailey, N. A.; Cahill, P.; Rogers, D.; Winter, M. J. J. Chem. Soc., Chem. Commun. 1983, 831.
- 18. (a) Bresciani, N.; Calligaris, M.; Delise, P.; Nardin, G.; Randaccio, L. J. Am. Chem. Soc. 1974, 96, 5642. (b) Schmidbaur, H.; Blaschke, G. Z. Naturforsch., B: Anorq. Chem., Org. Chem. 1979, 348, 584.
- 19. Schmidbaur, H. Acc. Chem. Res. 1975, 8, 62.
- 20. (a) Klein, H.-F.; Wenninger, J.; Schubert, U. Z. Naturforsch., B: Anorq. Chem., Org. Chem. 1979, 348, 1391. (b) Schore, N. E.; Young, S. J.; Olmstead, M. M.; Hofmann, P. Orqanometallics 1983, 2, 1769. (c) Mains, V. V.; Anderson, R. A. Orqanometallics 1984, 3, 675.
- 21. Chiu, K. W.; Howard, C. G.; Rzepa, H. S.; Sheppard, R. N.; • Wilkinson, G. Polyhedron 1982, 1, 441.
- 22. Gibson, V. C.; Grebenik, P. D.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1983, 1101.
- 23. Gibson, V. C.; Graimann, C. E.; Hare, P. M.; Green, M. L. H. Chem. Soc., Dalton Trans. 1985, 2025.
- 24. (a) Karsch, H. H.; Appelt, A. Phosphorus and Sulfur 1983, 18, 287. (b) Karsch, H. H.; Klein, H.-F.; Schmidbaur, H. Anqew. Chem., Int. Ed. Eng1. 1975, 14, 637. (c) Karsch, H. H.; Schmidbaur, H. Z. Naturforsch., B: Anorq. Chem., Org. Chem. 1977, 328, 762.
- 25. Rathke, J. W.; Muetterties, E. L. J. Am. Chem. Soc. 1975, 97, 3272.
- 26. (a) Karsch, H. H. Chem. Ber. 1977, 110, 2213. (b) Karsch, H. H. Chem. Ber. 1977, 110, 2699. (c) Karsch, H. H. Chem. Ber. 1977, 110, 2222.
- 27. (a) Karsch, H. H.; Klein, H.-F.; Schmidbaur, H. Chem. Ber. 1977, 110, 2200. (b) Harris, T. V.; Rathke, J. W.; Muetterties, E. L. J. Am. Chem. Soc. 1978, 100, 6966.
- 28. (a) Werner, H.; Werner, R. J. Orqanomet. Chem. 1981, 209, C50. (b) Werner, H.; Gotzlg, J. Orqanometallics 1983, 2, 547.
- 29. Bergman, R. G.; Seidler, P. F.; Wenzel, T. T. J. Am. Chem. Soc. 1985, 107, 4358.
- 30. (a) Cloke, F. G. N.; Cox, K. P.; Green, M. L. H.; Bashkin, J.; Prout, K. J. Chem. Soc., Chem. Commun. 1982, 30. (b) Cox, K.

P.; Bashkin, J.; Brookhart, M.; Cloke, F. G. N.; Derome, A. E.; Grebenik, P. D.; Green, J. C.; Green, M. L. H.; Hare, P. M. Chem. Soc., Dalton Trans. 1985, 423.

- 31. Green, M. L. H.; Parkin, G.; Mingqin, C.; Prout, K. J. Chem. Soc., Chem. Commun. 1984, 1400.
- 32. (a) Schore, N. E.; Hope, H. J. Am. Chem. Soc. 1980, 102, 4251. (b) Hofmann, P.; Stauffert, P.; Schore, N. E. Chem. Ber. 1982, 115, 2153. (c) Choukroun, R.; Gervais, D. J. Chem. Soc., Chem. Commun. 1982, 1300.
- 33. Hofmann, P.; Stauffert, P.; Schore, N. E. Chem. Ber. 1982, 115, 2153.
- 34. (a) Etienne, M.; Choukroun, R.; Basso-Bert, M.; Dahan, F.; Gervais, D. Nouv. J. Chim. 1984, 8, 531. (b) Etienne, M.; Choukroun, R.; Gervais, D. J. Chem. Soc., Dalton Trans. 1984, 915. (c) LeBlanc, J. E.; Moise, C.; Maisonnat, A.; Poilblanc, R.; Charrier, C.; Mathey, F. J. Orqanomet. Chem. 1982, 231, C43.
- 35. Young, S. J.; Olmstead, M. M.; Knudsen, M. J.; Schore, N. E. Organometallics 1985, 4, 1432.
- 36. Vaughn, G. D.; Krein, K. A.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1984, 23, 245.
- 37. Green, M. L. H.; Parkin, G. Moynihan, K. J.; Prout, K. J. Chem. Soc., Chem. Commun. 1984, 1540.
- 38. (a) Trefonas, L. M.; Flurry, R. L., Jr.; Majeste, R.; Meyers, E. A.; Copeland, R. F. J. Am. Chem. Soc. 1966, 88, 2145. (b) Cook, A. G. "Enamines", Marcel Dekker, New York, N.Y., 1969; Chapter 5.
- 39. Mason, R.; Rucci, G. J. Chem. Soc., Chem. Commun. 1971, 1132.
- 40. Sepelak, D. J.; Pierpont, C. G.; Barefield, E. K.; Budz, J. T.; Poffenberger, C. A. J. Am. Chem. Soc. 1976, 98, 6178.
- 41. (a) Abel, E. W.; Rowley, R. J. Chem. Soc., Chem. Commun. 1974, 72. (b) Abel, E. W.; Rowley, R. J. J. Chem. Soc., Dalton Trans. 1975, 1096.
- 42. Barefield, E. K.; Sepelak, D. J. J. Am. Chem. Soc. 1979, 101, 6542.
- 43. Fong, C. W.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1975, **1100.**

L.

INTRODUCTION

In recent years, the preparations and reactions of thiocarbene¹ and thiocarbyne² complexes have been studied extensively in this laboratory. One of those studies led to the synthesis of the thiocarbyne complex $[HB(pz)_3](CO)_2W(\equiv CSMe)$, 1,³ where $HB(pz)_3$ ["] is the hydrotris(l-pyrazolylborato) ligand. Aside from a **communication^** describing the reaction of 1 with strong acids to give the n^2 thiocarbene complex $\left[\begin{matrix}HB(pz)_{3}\end{matrix}\right]$ (CO)₂W[n²-CH(SMe)] 3CF₃SO₃, 6, there are no other reports of reactions of 1. Only three other thiocarbyne compounds [HB(3,5-Me₂-C₃HN₂)₃](CO)₂Mo(=CSR), R = Me, Ph, 4-C₆H₄NO₂,⁵ and one other n^2 -thiocarbene complex $\{(\text{PPh}_3)_2[\text{CN}(4-C_6H_4CH_3)](C1)$ Os $\lfloor n^2-$ C(SMe)(4-C₆H₄CH₃)]}ClO₄⁶ have been reported, and very little is known about their reactivities. In this paper, we describe studies of 1 and 6 which demonstrate that they are highly reactive toward certain nucleophiles and electrophiles.

RESULTS AND DISCUSSION

Reaction of $[HB(pz)₃](CO)₂W(≡CSMe)$ with PEt₃ Terminal carbyne

ligands in transition-metal complexes are frequently observed to undergo attack at the carbyne carbon by a variety of nucleophiles.⁷ Phosphines are among the nucleophiles which react in this manner. 8 However, in electron-rich complexes, e.g., $(n^5-C_gH_g)(CO)_{2}W(\equiv CMe)$ and $(Ph_2PCH_2CH_2PPh_2)(CO)_{2}W(\equiv CCH_2Ph)^{+}$, where the carbyne ligand is not susceptible to nucleophilic attack, the PMe₃,^{9a} CN⁻,^{9b} and "S₂CNMe₂^{9c} nucleophiles cause carbonylation of the carbyne to give the unusual $\binom{n}{r}$ - or $\binom{n}{r}$ - ketenyl compounds, whose bonding has been recently discussed.^{9d} Similarly, we observe that the thiocarbyne complex, $[HB(pz)_3](CO)_{2}W(\equiv CSMe)$, 1, reacts with PEt₃ at 40°C to give the airstable n^2 -ketenyl complex [HB(pz)₃](CO)(PEt₃)W(C(0)CSMe), 2, in 61% yield according to eq 1. The reaction of $(n^5-C_gH_g)(CO)_{2}W(\equiv CS-DNP)$,

$$
[HB(pz)_{3}](CO)_{2}W(\equiv CSMe) + PEt_{3} \xrightarrow{\Delta} \longrightarrow
$$

1
[HB(pz)_{3}](CO)(PEt_{3})W\nC-SMe
 $\bigcup_{i=0}^{n} C-SMe$ (1)

where DNP is 2,4-dinitrophenyl, with PPh₃ and PPh₂Me at room temperature gives the corresponding n^2 -ketenyl compounds (eq 2). The reaction of $[HB(pz)₂](CO)₂W(≡CSMe)$ with PEt₃ takes place under more forcing conditions than the $(n^5-C_gH_g)(CO)_2W(\equiv CS-DNP)$ reactions

$$
(\pi^{5}-C_{5}H_{5})(CO)_{2}W(\equiv CS-DNP) + PR_{3} \longrightarrow
$$

\n
$$
(\pi^{5}-C_{5}H_{5})(CO)(PR_{3})W_{C}-C-S-DNP
$$

\n
$$
PR_{3} \qquad \qquad U
$$

\n3, PPh₂Me
\n4, PPh₃ (2)

probably because of the great electron donor ability and steric hindrance of the $HB(pz)_{3}$ ⁻ ligand. The characteristic $v(C0)$ of the ketenyl CO was observed (Table I) between $1660-1680$ cm⁻¹.⁹ The ¹³C NMR spectrum of 2 was assigned (Table III) by comparison with assignments for the related complexes, $(n^5-C_5H_5)(CO)(PMe_3)\overline{W(C(0)C}-R)$, reported by Kreissl; $9a$ in particular, the relationship, $J_{P-keteny1C}$ $>$ J_{P-ketenv1CO}, ^{9a} was used to assign the two carbon atoms bonded to the W atom in the ketenyl ligand. No reaction was observed between 1 and the nitrogen donors: NH₂Me (25°C, 1 h, CH₂C1₂), NH₂Et (40°C, 13 h, CH_2Cl_2), and LiNEt₂ (50°C, 19 h, THF). Sulfur atom sources (elemental sulfur and ethylene sulfide) did not react (25°C, 20 h, CH_2Cl_2), while $3-\text{ClC}_6H_4\text{CO}_3H$ only gave decomposition; there was no evidence for the formation of $W-C(=X)$ SMe or $W=CS(=X)$ Me, $X = 0$ or S, products in these reactions. The reaction of 1 with $C1₂$ did not give CO-containing products, as detected by IR.

Reaction of $[HB(pz)₃](CO)(PEt₃)\sqrt{C(0)}CSM$ e) with MeOSO₂F

Kreissl et al.¹⁰ reported the methylation and addition of XCl₃ (X = B, Al, or In) to the ketenyl CO in $(n^5-C_5H_5)(C0)(PMe_3)\overline{W(C(0)}C-R)$ (R = Me, $4-C_6H_4CH_3$) to give $(\pi^5-C_5H_5)(CO)(PMe_3)W(RC=COMe)^+$ and $(\pi^5 C_5H_5$)(CO)(PMe₃)W(RC=COXCl₃). A related conversion of a carbyne to an alkyne complex was observed in the coupling reaction of Cl(PMe₃)_{d}W(=CH) and CO in the presence of AlCl₃ to give (CO)- $(PMe₃)₃(C1)W(HC_{Xi}COA1C1₃)$.¹¹ We find that $[HB(pz)₃](C0)(PEt₃)$ - $W(C(0)$ CSMe) reacts similarly with Me0SO₂F at room temperature (eq 3), producing the air-stable violet complex $\{[HB(pz)_3](C0)(PEt_3)-$ W(MeOC≡CSMe)}FSO₃ with the unusual MeOC=CSMe acetylene ligand. To our knowledge, this acetylene has not previously been prepared as either the free molecule or the ligand. IR, 1 H, and 13 C NMR data for 5

[HB(pz)3](C0)(PEt3)W=====C-S-Me + MeOSOgF > 2 : . ,SMe+ (3) C [HB{p2),](CO)(PEtOW^||l c OMe

5

are similar to those for the related complex, $(n^5 C_5H_5$)(CO)(PMe₃)W(MeOC=CMe)⁺.¹⁰ The low-field positions of the alkyne carbon atoms (δ 231.13, 198.02 ppm) in the 13 C NMR spectrum of complex 5 are similar to those in $(n^5-C_5H_5)(CO)(PMe_3)W(MeOC=CMe)^*$ (6 227.1,

Table I. IR Data for the Complexes in CH_2Cl_2 Solvent

^v(CO) of ketenyl **CO.**

Complex	H3 of pz	H4 of pz	H ₅ of pz	CH	SMe	other
1 ^b	7.91 (br) \sim	6.23 (br)	7.65 (br)		2.69	
2 ^b	$8.29(d, J=1.45)$	6.41 $(t, 3=2.02)^C$	$7.72(d, J=2.01)$		2.80	1.74 (m, PCH_2)
	$8.06(d, J=1.66)$	$6.29(t, J=2.09)$	$7.51(d, J=1.42)$			0.64
	$7.77(d, J=2.14)$	$6.04(t, J=2.08)$	$7.20(d, J=1.48)$			$($ quintet, CH ₃) ^d
5 ^b	$8.00(d, J=2.15)$	$6.58(t, J=2.13)^C$	$7.91(d, J=1.88)$		1.94	4.45 (OMe)
	$7.98(d, J=2.30)$	$6.45(t, J=2.18)$	$7.75(d, J=2.22)$			1.82 (m, PCH_2)
	$7.93(d, J=1.88)$	$6.21(t, J=2.21)$	$6.91(d, J=1.96)$			0.66
						(quintet, CH_3) ^e
6	$8.07(d, J=2.21)$	6.50(t, $J=2.37$) ^C	$7.91(d, J=2.36)$	12.78	2.37	
	7.94 $(t, J=2.90)^C$	$6.47(t, J=2.35)$	$7.83(d, J=2.14)$	$(s, J_{WH} =$		
			$7.81(d, J=2.07)$	19.83)		
7 ^b	$8.23(d, J=1.22)$	6.30(t, $J=1.10$) ^C	$7.70(d, J=0.98)$			
$\mathbf{8}^{\mathbf{b}}$	$8.42(d, J=1.21)$	6.30(b)	$7.68(d, J=1.38)$			

Table II. 1_H NMR Data for the Complexes in CD_2Cl_2 solvent at Room Temperature a

^aChemical shifts in δ and coupling constants in Hz. Signals are singlets unless indicated otherwise.

 b CDCl₃ solvent. $c_{\text{Due to overlapping d of d.}}$ $d_{J_{\text{HH}}=7.53, J_{\text{PH}}=15.03.}$ $e_{J_{HH}}$ = 7.76, J_{PH} = 15.77. f_{JHH} = 7.75, J_{PH} = 17.82.

36

 \bullet

 \sim

 $\langle \cdot \rangle$

Complex	co	$C3$ of pz	$C4$ of pz	$C5$ of pz	CH	SMe	Other
1 ^b	224.7	\bullet 144.9	105.7	135.2		17.4	264.4 (W-CS)
$\mathbf{2}$	229.75	145.67,	107.54,	135.96,		16.18	209.16
		144.72,	106.67	135.10			$(d, J_{PC} = 5.86)$
		142.21		134.67			ketenyl C),
							205.22
							(ketenyl CO),
		\bullet					18.44 (d,
							J_{PC} =27.34, PCH ₂),
			\bullet				6.04 (CH ₃)

Table III. 13 C NMR Data for the Complexes in CD₂Cl₂ solvent at Room Temperature^d

 \mathbb{C}

 $\ddot{}$

 a Chemical shifts in s and coupling constants in Hz.

 $\langle \rangle$

 \sim

 \mathcal{L}

 \prime

 b CDCl₃ solvent.

 $\mathcal{A}^{\mathcal{A}}$ \mathcal{L}_{max} . 39

 \cdot

 \sim

 \mathcal{L}

 \bullet

 $\ddot{\sigma}$

197.7 ppm), 10 (n⁵-C₅H₅)(PMe₃)₂W(MeOC=CMe) (δ 227.9, 200.5 ppm), 12 and (C0)(π^2 -S₂CNEt₂)₂W(HC=CH) (6 206.6, 207.1 ppm),¹³ where the acetylene moiety is believed to be a 4 electron donor. The violet compound 5 exhibits a low-energy absorption in the visible spectrum, $\lambda_{max} = 560$ nm. This absorption is probably a d-d transition as was proposed for the cationic alkyne complexes, $(n^5-C₅H₅)(PMe₃)(C0)W[Me0C_{\equiv}C(4 C_6H_4CH_3$)]⁺ (λ_{max} = 465 nm)¹² and (n⁵-C₅H₅)(PMe₃)₂W[MeOC=C(4-C₆H₄CH₃)]⁺ $(\lambda_{\text{max}} = 562 \text{ nm}).^{12}$ Both electronic spectroscopy and electrochemical measurements have been used as convenient probes of the d_{π} interactions in the acetylene complexes.¹⁴ Compound 5 exhibits a reversible reduction wave (E_x) at -1.16 V and a reversible oxidation wave $(E_{\frac{1}{2}})$ at 1.00 V (vs. Ag/AgCl in 0.10 M (n-Bu)₄NPF₆, 200 mV/sec scan rate, CH₃CN).

Preparation of $[{HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)]]CF_{3}SO_{3}$ In a Communication,⁴ we reported that protonation of $[HB(pz)_{3}](C0)_{2}W(\equiv CSMe)$ with CF₃SO₃H gives the violet air-stable complex {[HB(pz)₃](CO)₂W[n²-CH(SMe)]}CF₃SO₃, 6, in which the carbene ligand is bonded to the metal through both the C and S atoms, as shown by an X-ray diffraction study (eq 4). Reaction 4 also occurs with HBF_4*Et_20 and CF_3CO_2H but not

with acetic acid. Carbyne 1 is regenerated in approximately 10% yield when 6 is treated with the bases K_2CO_3 or Et₃N in CH₂C1₂ (30 min) or with NaH in THF $(4 h).^{4,15}$ There was no adduct formation between 1 and other electrophiles such as BF_3 , MeOSO₂F, or diphenylketene.

Related to equation 4 are the reactions of $(C1)(CO)(PPh₃)₂OS(≡CR)$, where R = p-tolyl, with HCl¹⁶ to give 0s(=CHR)(Cl)₂(CO)(PPh₃)₂ and (n⁵-C₅H₅)(CO)₂W(=CNEt₂) with HCl¹⁷ to give $(\pi^5-C_5H_5)(CO)_2(C1)W[=C(H)(NEt_2)].$ The reaction of 1 with HCl appears to give initially n^2 -carbene [[HB(pz)₃](C0)₂W[n²-CH(SMe)]]Cl or possibly the n^1 -carbene $[HB(pz)_{3}]$ (CO)₂W(C1)[=CH(SMe)] as suggested by an IR spectrum ($v(CO)$: 2056, 1985 cm⁻¹, CH₂CI₂) of the reaction mixture. However, the compound is not stable under the reaction

$$
[HB(pz)3](CO)2W \equiv C-SMe + HX \longrightarrow [HB(pz)3](CO)3WX (5)
$$

7, C1
8, I

conditions and could not be isolated. The only product that could be isolated was $[HB(pz)_3](CO)$ ₃WCl, 7, although in low yield (16%), eq (5). Similarly, the reaction of 1 with HI gives a low yield (10%) of $[HB(pz)_3](CO)$ ₃WI, 8. IR and ¹H NMR data for 7 and 8 are similar to those for the related complexes, $[HB(pz)_3](C0)_{3}$ MoX, X = Br, I, prepared from the reaction of $[HB(pz)_3]$ (CO)₃Mo⁻ and X_2 .¹⁸

Expecting the sulfur group in 1 to be reactive toward Hg(II) compounds, 1 was treated with HgCl₂ and HgPh₂ at room temperature in CH_2Cl_2 ; however, there was no reaction. Thus, the sulfur is very non-

42

nucleophilic, probably because of π -bonding into the carbyne carbon atom.

In the 1_H NMR spectrum of 6, the carbene proton occurs at low field (6 12.78, J_{WH} = 19.83, natural abundance of 183 W = 14.4%), as observed in n^1 cationic carbene complexes $(n^5-C_5H_5)(CO)_2Fe[CH(SMe)]^+$ (6 14.86), 1d (n^5 -C₅H₅)(N0)(PPh₃)Re[CH(SMe)]⁺ (6 14.90), ¹⁹ and (Cl)(C0)₂(PPh₃)₂Os[CH(SMe)]⁺ (6 14.70).²⁰ One-bond ¹³C-H coupling constants $({}^{1}J_{CH})$ are indicators of the amount of carbon s character in the **C-H bond.**21 In the proton-coupled NMR spectrum of **6,** the carbene carbon resonance (6 227.95 ppm) has a 1 J_{CH} coupling constant of 211 Hz, which is in the range $({}^{1}J_{CH} = 140-230$ Hz)²¹ of C(sp²)-H coupling constants in organic molecules. However, the observed $1_{J_{CH}}$ coupling constant (211 Hz) in 6 is larger than those found in other carbene complexes, $(n^5-C_5H_5)(C0)_2Fe[CH(Ph)]^+$ (6 324.4 ppm, $^1J_{CH} = 146$ Hz),²² (C1)(PMe₃)₄W(CH₂)⁺ (s 220 ppm, 1 J_{CH} = 119 Hz),²³ and (n⁵- C_5H_5)(CO)₂(C1)W[CH(NEt₂)] (s 236.2 ppm, $1_{J_{CH}} = 138.5$ Hz).¹⁷ The difference may be due to the three-membered ring geometry and electronegativity of the substituents on the carbon atom in 6.

In the ¹H and ¹³C NMR spectra (Tables II and III) of 6 at room temperature, a sharp singlet corresponding to the SMe group is observed at δ 2.37 and δ 28.40, respectively. In ¹³C (-20°C, CD₂Cl₂) and 1 H NMR (-8°C, -40°C, and -75°C, CD₂Cl₂) spectra of 6 at low temperatures, the SMe resonance remains a singlet. While inversion of the sulfur atom in other sulfide complexes is frequently **observed,**24

there is no evidence for inversion at the sulfur atom in the n^2- CH(SMe) carbene ligand of 6 in this temperature range (-75°C-25°C).

Reactions of $[HB(pz)_{3}](CO)_{2}W[CH(SMe)]^{+}$ with Phosphorus Donors

The C(carbene) atom in transition-metal carbene complexes is frequently the site of attack by a variety of nucleophiles. 25 26 Phosphines are among the nucleophiles which react in this manner. Recent examples are the reactions of $(n^5-C_5H_5)$ (CO)₂Fe[CH(SMe)]^{+ 1d} and $(C0)$ ₅W[CH(Ph)]²⁷ with phosphines and phosphites to give the adducts $(n^{5}-C_{5}H_{5})(CO)$ ₂Fe[CH(SMe)(L)]⁺ (L = PPh₂Me, PPh₃, PPh₂Cl, PPh₂H, $P(OPh)_{3}$, $P(OCH_{2})_{3}CMe)$ and $(CO)_{5}W[CH(Ph)(PPh_{3})]$. Similarly, $[HB(pz)_3](CO)_{2}W[n^2-CH(SMe)]^+$ reacts at room temperature with phosphorus donors to give the adducts $[HB(pz)₃](C0)₂W[\eta^2-CH(SMe)L]^+$ (eq 6) in ça. 90% yield.

L = PPh₃ (9), PEt₃ (10), P(OMe)₃ (11), PPh₂H (12)

Based on the structure of deprotonated 12 discussed in the next section, the phosphine adducts (9-12) probably have the structure (eq 6) in which the phosphorus donor adds to the carbene carbon on the side opposite the Me on the S atom, which is also the side opposite the bulky $[HB(pz)_3]$ group. Despite the strained 3-membered ring in 6, there is no evidence for phosphine displacement of the sulfur from the W to give products $[HB(pz)_{3}]$ (CO)₂(L)W=CH(SMe)⁺ with an n^{1} -carbene ligand.

The $¹$ H NMR resonance of the methine hydrogen in 9, 10, and 12</sup> occurs as a singlet. The absence of coupling to the P atom may be due to a Karplus-like dependence of $2J_{\text{PH}}$ on the angle between the H and P atoms;^{28 2}J_{PH} ranges from 0 to 26 Hz depending on the angle between them. In contrast to the phosphine adduct situation, the methine hydrogen in the P(OMe)₃ adduct, 11, does occur as a doublet (J_{PH} = 3.2 Hz) due to coupling with the P atom. A correlation between the chemical shifts of the methine hydrogen $(9 (PPh₃)$ & 5.67, 12 $(PPh₂H)$ & 5.45, 11 $(P(\text{OMe})_3)$ 6 4.99, 10 (PEt_3) 6 4.75) and the methyl hydrogens of the SMe group (9 & 1.93, 12 & 1.89, 11 & 1.81, 10 & 1.74) is noticeable. Since this order is not in accord with the order of either the donor ability or the steric bulkiness of L , 29 it is not clear what factors determine this trend. The large J_{PH} coupling constant (510.25 Hz) observed in the 1 H NMR spectrum of the PPh₂H adduct 12 is characteristic of H atoms bound directly to a phosphorus atom.30

In the 13 C NMR spectrum of 9 and 10, the methine carbon occurs as a doublet due to coupling with the phosphorus P atom. The chemical shifts of the two CO groups differ (Table III) by as much as 28 ppm.

Deprotonation of the methine hydrogen in 10 with NaH (25°C, 24 h, CH₂Cl₂) gives the thiocarbyne compound 1 in 90% yield (eq 7). However, deprotonation of 6 with NaH (eq 4), as mentioned earlier.

$$
[HB(pz)_{3}](CO)_{2}W \xrightarrow[\begin{array}{c} 10 \end{array}]{}^{Me^{+}} CF_{3}SO_{3}^{-} + NaH \xrightarrow[\begin{array}{c} 10 \end{array}]{}^{(7)}
$$

$$
[HB(pz)3](C0)2W \equiv C-SMe + PEt3 + H2 + Na+CF3SO3
$$

produces the thiocarbyne compound 1 in low yield (10%), as well as a side product $[HB(pz)_{3}]$ (CO)₂W[n²-CH(SMe)₂] in 40% yield.^{4,15} Although the mechanisms of these two reactions are not clear, $PEt₃$ seems to play an important role in blocking the formation of the side product, yielding mainly the thiocarbyne compound 1.

Reaction of $\{[HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)(PPh_{2}H)]\}CF_{3}SO_{3}$ with NEt₃ The P-H proton in 12 is readily removed with NEt₃ in CH₂Cl₂ at room temperature to give $[HB(pz)_3](C0)_2W{\pi^2-CH(SMe)(PPh_2)}$, 13 (eq 8). The 1 H NMR resonances of the methine hydrogen (6 4.65) and methyl Me^{π} and the mass of the mass of the mass of the mass \mathcal{M} e

hydrogens δ 1.47) in 13 are upfield from those of the parent PPh₂H adduct, 12 (δ 5.45, 1.89), as expected for the removal of a proton. In the 31 P NMR spectrum of 13, a singlet (6 10.52), without W satellite peaks, is observed, which establishes that the P atom is not bound to the W; when phosphines are bound to a W atom, 1_{Jwp} is usually about 200-300 Hz.³¹ These NMR results, together with the lower $v(C0)$

46

values, suggest that complex 13 contains a [CH(SMe)(PPh₂)] ligand which is bonded to the metal through both the C and S atoms, as is the n^2 -CH(SMe) ligand in the starting complex 6. ¹H NMR spectra (50°C, 80°C) of 13 in CD₃NO₂ at elevated temperatures are the same as at room temperature; thus, no rearrangement to the form in which the [CH(SMe)(PPh₂)] ligand coordinates through the C and P atoms occurs. Several complexes with 3-membered metal-C-P rings are **known,**^2 and rearrangement of primary and secondary phosphine carbene adducts to give complexes with metal-P bonds have been reported. Thus, the reaction of $(C0)_{5}Cr[C(0Me)Ph]$ with PMe₂H gives the adduct $(C0)$ ₅Cr[C(0Me)Ph(PMe₂H)] which upon stirring in acetone rearranges to give the phosphine complex $(C0)_{5}$ Cr[PMe₂[CH(Ph)(OMe)]].³³ Also, the reaction of $(C0)_{5}W(C(SMe)_{2}]$ with PPh₂H is believed to give initially the adduct, which rapidly rearranges to yield the final phosphine product $(C0)_{5}$ W[PPh₂[CH(SMe)₂]].^{1a,34} $(n^5 - C_5H_5)(C0)_2Fe[CH(SMe)-$ (PPh₂H)]⁺ also rearranges to give (n⁵-C₅H₅)(C0)₂Fe[PPh₂(CH₂SMe)]⁺ at 168°C in the solid state.^{1d}

To ensure that the ligand $[CH(SMe)(PPh₂)]$ is bonded to the tungsten through both the C and S atoms, and to establish the stereochemistry within the ligand, an X-ray structural determination of 13 was undertaken. The $[HB(pz)_3](CO)_{2}W[CH(SMe)]$ portion of the molecule 13 retains the atomic connectivity of the carbene cation 6 as shown in Fig. 1. Some structural changes, however, are noticeable. The W-S bond distance, $2.440(9)$ Å is somewhat shorter than the 2.481(6)Å found in 6. The W-C(3) distance $(2.22(3)$ Å) is substantially

47

Figure 1. ORTEP plots of $(HB(pz)_{3}](CO)_{2}M[n^{2}-CH(SMe)]^{+}$, 6,⁴ (left) and $[HB(pz)₃](CO)₂W[n²-CH(SMe)(PPh₂)]$. 13. (right)

 $\frac{4}{6}$

Figure 2. Perspective of $[HB(pz)₃](C0)₂W[n²-CH(SMe)(PPh₂)]$, 13

 $\ddot{}$

	X	У	Z	Ueq ^b
W	913(1)	2732(1)	3737(2)	39(0)
S	$-884(7)$	3828(5)	5056(11)	43(3)
P	$-2184(8)$	3256(5)	1617(11)	43(3)
В	3329(30)	1611(25)	6351 (48)	42(14)
C(1)	931(25)	3644(19)	2538(36)	30(7)
0(1)	876(24)	4258(16)	1854(33)	64(11)
C(2)	624(24)	2355(17)	1291(36)	29(6)
0(2)	475(22)	2075(18)	$-325(32)$	77(11)
C(3)	$-1081(26)$	2882(19)	3476(37)	35(7)
C(4)	$-1017(36)$	3530(27)	7162(54)	70(11)
N(1)	1129(23)	1592(18)	5257(33)	51(11)
N(11)	2214(23)	1280(16)	6264(32)	42(10)
C(11)	415(29)	1125(20)	5511(46)	47(14)
C(12)	983(31)	510(19)	6575(48)	50(14)
C(13)	2177(28)	555(22)	7028(36)	45(13)

Table IV. Final Atomic Parameters^a for $[HB(pz)_{3}](C0)_{2}W[n^{2}-$ **CH(SMe)(PPh2)], 13**

a
Estimated standard deviations are given in parentheses. Positional parameters x 10⁴. b Ueq = (1/3) zzā_j·ā_jU_{ij}a_ja_j x 10³.

 $\ddot{}$

 \sim \sim

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\langle \cdot \rangle$

 $\ddot{}$

Table IV (Continued)

Table V. Selected Bond Distances $(A^{\circ})^{\tilde{a}}$ in $[HB(pz)_{\tilde{3}}](C0)_{\tilde{2}}W[\eta^2 CH(SMe)(PPh₂)$], 13, and $[HB(pz)₃](CO)₂W[n²-CH(SMe)]⁺$, 6⁴

	13	6		13	6
$M-S$	2.440(9)	2.481(6)	$W-N(1)$	2.30(3)	2.21(2)
$W-C(1)$	1.90(3)	2.04(2)	$W-N(2)$	2.14(3)	2.20(1)
$W-C(2)$	1.87(3)	2.09(2)	$W-N(3)$	2.22(3)	2.20(1)
$W-C(3)$	2.22(3)	1.93(2)	$S-C(4)$	1.82(4)	1.85(2)
$S-C(3)$	1.80(3)	1.72(2)	$B-N(11)$	1.54(5)	1.57(3)
$P-C(3)$	1.81(3)		$B-N(21)$	1.58(5)	1.58(3)
$P-C(41)$	1.85(3)		$B-N(31)$	1.50(5)	1.54(3)
$P-C(51)$	1.81(4)		$C(2)-O(2)$	1.24(4)	1.09(3)
$C(1)-O(1)$	1.19(4)	1.13(3)			

aEstimated standard deviations are given in parentheses.

	13	6		13	6
$S-W-C(1)$	85.7(9)	89.4(6)	$C(1)-W-C(2)$	73(1)	89.3(8)
$S-W-C(2)$	113.6(9)	116.2(6)	$C(1)-W-C(3)$	102(1)	88.0(8)
$S-W-C(3)$	45.3(8)	43.8(6)	$C(1) - W - N(1)$	174(1)	171.4(7)
$S-W-N(1)$	98.9(7)	95.8(4)	$C(1) - W - N(2)$	94(1)	90.2(7)
$S-W-N(2)$	166.7(7)	164.8(4)	$C(1) - W - N(3)$	93(1)	90.3(7)
$S-W-N(3)$	86.3(7)	84.2(4)	$C(2)-W-C(3)$	79(1)	72.4(8)
$C(3)-W-N(1)$	85(1)	100.5(7)	$C(2)-W-N(1)$	109(1)	94.5(7)
$C(3)-W-N(2)$	147(1)	151.3(7)	$C(2)-W-N(2)$	79(1)	78.9(7)
$C(3)-W-N(3)$	127(1)	127.9(7)	$C(2)-W-N(3)$	154(1)	159.6(7)
$N(1) - W - N(2)$	81(1)	83.0(6)	$C(3)-P-C(41)$	104(1)	
$N(1) - W - N(3)$	82.8(9)	83.5(5)	$C(3)-P-C(51)$	103(2)	
$N(2)-W-N(3)$	80(1)	80.6(5)	$C(41) - P - C(51)$	99(2)	
$W-S-C(3)$	61(1)	51.0(7)	$N(11) - B - N(21)$	104(3)	107(2)
$W-S-C(4)$	109(1)	110.5(7)	$N(11) - B - N(31)$	109(3)	109(2)
$C(3)-S-C(4)$	102(2)	106(1)	$N(21) - B - N(31)$	110(3)	109(2)
$W-C(3)-S$	74(1)	85.3(8)	$W-C(1)-0-(1)$	176(3)	177(2)
$W-C(3)-P$	126(2)		$W-C(2)-O(2)$	177(3)	176(2)
$S-C(3)-P$	110(2)				

Table VI. Selected Bond Angles(\degree)^a for [HB(pz)₃](CO)₂W[n²-CH(SMe)(PPh₂)], 13, and [HB(pz)₃](CO)₂W[n²-CH(SMe)]⁺, 6⁴

aEstimated standard deviations are given in parentheses.

 $\ddot{}$

Table VII. Selected Torsion Angles (°) for $[HB(pz)_{3}] (CO)_{2}W[n^{2}-$ CH(SMe)(PPh2)l, 13

longer than the W=C(carbene) distance $(1.93(2)$ Å) in 6 and is comparable to W-C(sp³) bond distances found in W(=CCMe₃)(=CHCMe₃)(- CH_2 CMe₃)(dmpe) (2.258(9)Å)³⁵ and in [Cp₂W(CH₃)(CH₂CH₂-PMe₂Ph)]PF₆ (avg. 2.26(3)Å).³⁶ The S-C(3) distance $(1.80(3)$ Å) is similar to single bond $S-C(sp^3)$ distances obtained in microwave studies of MeSH $(1.819\text{\AA})^{37}$ and Me₂S (1.802\AA) . 38 Also, S-C(3) is comparable to S-C(4)(1.82(4**)1)**, but is longer than the S-C(3) distance (1.72(2**)1)** in 6. Unfortunately, the large estimated standard deviations make more precise comparisons impossible. The single bond $C(3)$ -P distance \sim (1.81(3**)1)** is similar to P-C(sp3) distances (avg. 1.829(3**)1)** found in PPh₂CH₂CH₂PPh₂ (DPPE).³⁹ These changes in bond distances from molecules 6 to 13 involving C(3) can be easily rationalized by recognizing that the $C(3)$ atom is approximately sp² hybridized in 6 and sp^3 . in 13. All of the bonds around $C(3)$ in 13 are those expected for single bond distances to an sp^3 C atom.

P and $C(4)$ are $trans$ to each other with respect to the $WSC(3)$ plane⁴⁰ minimizing possible steric hindrance of the PPh₂ group with the methyl or pyrazolyl group. The groups around the C(3)-P bond have a staggered conformation, C(41) being trans to W and C(51) trans to S (Table VII). One may view the remaining lone pair on P as being trans to $H(3)$. Thus, the orientation of the PPh₂ group minimizes steric repulsion with the remainder of the molecule.

W-CO distances (avg. $1.89(3)$ Å) are significantly shorter than those of 6 (avg. $2.07(2)$ Å), suggesting enhanced π -backbonding to the carbonyls, which is supported by the substantially lower **v(CO)** values

for 13 than for 6 (Table I). The bond angle $C(1)-W-C(2)$, 73(1)°, is substantially smaller than that of 6 (89.3(8)°); this change in the orientation of the C(2)0(2) group might be ascribed to the close proximity of one of the phenyl rings $(0(2) \cdot \cdot \cdot C(51) = 3.19(5)$ Å, $0(2)$ ••• $C(56) = 3.34(5)$ Å) and the phosphorus atom $(P$ ••• $C(2) = 3.11(3)$ Å, P • • • 0(2) = 3.42(3)Å) (Fig. 2).

EXPERIMENTAL SECTION

General Procedures All reactions were carried out under an N₂ atmosphere. CH₂C1₂ and hexane were dried over CaH₂ and distilled under N₂. Diethyl ether was distilled from Na-benzophenone under N₂. Reagent grade methanol was stored over type 4A molecular sieves. Reactions were carried out at room temperature unless stated otherwise. Products were crystallized using a layering technique, whereby the compound dissolved in CH_2Cl_2 (1 - 10 mL) was layered with hexane or ether (5-50 mL) and allowed to stand at -20°C.

Infrared spectra were recorded on a Perkin-Elmer 281 spectrometer, and band positions were calibrated against gaseous CO. The UV-visible spectrum was obtained on a Varian DMS 90 spectrometer. 1_H NMR spectra were obtained with a JEOL FX-90Q (89.55) MHz), Nicolet NT-300 (300 MHz), or Bruker WM-300 (300 MHz) spectrometer. Proton-decoupled 13 C NMR spectra were measured on a JEOL FX-90Q (22.5 MHz), Nicolet NT-300 (75.46 MHz), or WM-300 (75.43 MHz) spectrometer. Broad band decoupled ^{31}P NMR spectra were run on a Bruker WM-300 (121.44 MHz) spectrometer. Variable temperature NMR studies were done on the Bruker WM-300 spectrometer. To reduce 13 C NMR data collection times, $Cr(\text{acc})_3$ (ca. 0.1 M) was added to the solutions.⁴¹ Tetramethylsilane (Me_ASi) was the standard of reference for all 1 H NMR spectra; chemical shifts are reported in δ downfield from $Me₄Si$. Chemical shifts of 13 C nuclei are reported in δ units using CD_2Cl_2 (6 = 53.80) as the internal standard. 31_P resonances,

58

downfield from the H_2PO_A external reference (in a capillary insert), are given in positive values (ppm). Electron impact mass spectra (EIMS) were obtained on a Finnigan 4000 spectrometer. Fast atom bombardment (FAB, glycerol matrix) mass spectra were recorded on a Kratos MS-50, Finnigan MAT 8230, or Hitachi M-80A spectrometer. Conductivity measurements were made by using a Markson 4402 conductivity meter and dip cell. Elemental microanalyses were performed by Galbraith Laboratories Inc., Knoxville, Tennessee.

The complexes $[HB(pz)_{3}](CO)_{2}W(\equiv CSMe)$ (1) and $(\pi^{5}-C_{5}H_{5})(CO)_{2}W(\equiv CS-E_{2}F)$ DNP), where DNP is the 2,4-dintrophenyl group, were prepared using previously described procedures.³ PPh₃ was recrystallized from hexane, and Et₃N was distilled from KOH in an N₂ atmosphere. All other chemicals were used as received from commercial sources. Me0S02F was acquired from Tridom Chemical (Fluka).

 $[HB(pz)₃](CO)(PEt₃)\sqrt{C(O)}CSMe$, 2 A solution of 40 mL of CH₂Cl₂ containing PEt₃(0.22 mL, 1.5 mmol) and the thiocarbyne compound, 1, (0.39 g, 0.76 mmol) was refluxed for 22h, yielding a dark-red solution. The solution was evaporated to dryness under reduced pressure, and the residue was redissolved in a minimum amount of CH₂Cl₂. This CH₂Cl₂ solution was chromatographed on a 1 x 30 cm Florisil column. Unreacted starting material was eluted first with $CH₂Cl₂$. Then, a dark red band on the top of the column was eluted with methanol. The methanol eluate was evaporated to give a solid, which was recrystallized from CH_2Cl_2/h exane at -20°C yielding air-

59

stable maroon needles of $[HB(pz)_{3}]$ (CO)₂W(C(O)CSMe), 2 (0.29 g, 61%). Anal. Calcd for C₁₉H₂₈BN₆0₂PSW: C, 36.21; H, 4.48; N, 13.34. Found: C, 36.26; H, 4.66; N, 13.15. EIMS (18 eV): m/e 602 (M+-CO), 512 (M^{\dagger} -PEt₃), 484 (M^{\dagger} -PEt₃-CO).

 $(n^5-C_5H_5)(C0)(PPh_2Me)\overline{W(C(0)}Cs-DNP)$, 3 Upon addition of PMePh₂ (27 μ L,0.15 mmol) to a 10 mL CH₂Cl₂ solution of (π^5 - C_5H_5)(CO)₂W(\equiv CS-DNP)(60 mg, 0.12 mmol), the color of the solution changed to yellow. After 15 min, the solvent was removed under vacuum. The resulting yellow solid was washed with heptane. Airstable yellow crystals of $(n^5-C_5H_5)(CO)(PPh_2Me)W(C(0)CS-DNP)$, 3, were obtained by recrystallizing the solid from CH₂Cl₂/hexane at -20°C (77 mg, 90%). ¹H NMR (CDC1₃): 7.44 (m, Ph), 5.48 (d, J_{PH} = 1.2 Hz, Cp), 2.30 (d, J_{PH} = 9.77 Hz, CH_3).

 $(\pi^5 - C_5H_5)(CO)(PPh_3)W(C(0)CS-DNP)$, 4 In a procedure similar to the one directly above, PPh_3 (18 mg, 0.069 mmol) was allowed to react with $(n^5-C_5H_5)(CO)_2W(\equiv CS-DNP)$ (32 mg, 0.062 mmol) in 5 mL CH₂Cl₂ for 2 h. The product $(n^5-C₅H₅)(C0)(PPh₃)\overline{W}(C(0)Cs-DNP)$, 4, was characterized only by its IR spectrum.

 ${[HB(pz)_3](CO)(PEt_3)}$ W(MeOC=CSMe)}FSO₃, 5 Into a 30 mL CH₂Cl₂ solution of 2 (0.20 g, 0.31 mmol) was added MeOSO₂F (25 μ L, 0.31 mmol). After the reaction mixture was stirred for 30 min, the solvent was removed under vacuum. The residue was washed with hexane (30 mL) three times. Air-stable violet crystals of 5 were obtained by recrystallizing the solid from CH_2Cl_2/Et_20 at -20°C (0.21 g, 93%).

Anal. Calcd for C₂₀H₃₁BFN₆0₅PS₂W: C, 32.28; H, 4.20; N, 11.29. Found: C, 31.91; H, 4.13; N, 11.08. $31p$ NMR (CDCl₃): 6 10.07 (J_{WP} = 305.17 Hz). MS(FAB): m/e 645 (parent cation), 502 (parent cation-CO-Me). Molar conductivity (CH₂Cl₂): $\Lambda_M = 56.40 \text{ g}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ at 10⁻³ M. (1:1 electrolyte).⁴² UV-vis: λ_{max} = 560 nm.

 ${[\text{HB(pz)}_3](\text{CO})_2\text{W[n}^2-\text{CH(SMe)}]}$ CF₃SO₃, 6 Addition of CF_3 SO₃H

(53 μ L, 0.60 mmol) to a solution of 1 (0.31 g, 0.60 mmol) in 40 mL of CH₂C1₂ at 0°C produced an immediate color change from orange to the violet color of product 6. After the solvent was removed under vacuum, the resulting solid was washed several times with hexane. Air-stable violet crystals of 6 were obtained by recrystallizing the solid from CH₂Cl₂/Et₂0 at -20°C in essentially quantitative yield. Anal. Calcd for C₁₄H₁₄BF₃N₆O₅S₂W: C, 25.40; H, 2.13; N, 12.69. Found: C, 25.31; H, 2.47; N, 12.71. MS(FAB): m/e 513 (parent cation), 485 (parent cation-CO), 457 (parent cation - 2C0). Molar conductivity (CH₂C1₂): $A_M = 33.93 \text{ }\Omega^{-1} \text{ }\text{m}^2 \text{ }\text{mol}^{-1} \text{ at } 10^{-3}$ (1:1) electrolyte). 42

 $[HB(pz)_{3}]$ (CO)₃WC1, 7 Hydrogen chloride was bubbled slowly through a 10 mL CH₂C1₂ solution of the thiocarbyne complex, 1, (56 mg, 0.11 mmol) for 30 min. The solvent was removed under vacuum, and the resulting solid was redissolved in a minimum amount of CH_2Cl_2 . This solution was chromatographed on $a \, 1 \times 30$ cm Florisil column. The starting thiocarbyne complex, 1, was eluted first with a 1:2 mixture of CH₂C1₂ and hexane. Then, a yellow band was eluted with the same
solvent mixture. The yellow eluate was evaporated to dryness. The resulting solid was recrystallized from CH₂Cl₂/hexane at -20°C to give brown crystals of 7 (9 mg, 16%). EIMS (22 eV): m/e 488($M^{+}-CO$), $481(M^{+}$ -C1).

 $[HB(pz)₃](CO)₃WI$, 8 Hydrogen iodide was bubbled through a 20 mL CH₂C1₂ solution of the thiocarbyne complex, 1, $(0.19 g, 0.37$ mmol) until the IR spectrum showed no CO bands corresponding to the starting thiocarbyne complex, 1 (ca. 1 min). The solution was evaporated to dryness under reduced pressure, and the residue was redissolved in a minimum amount of CH_2Cl_2 . This solution was chromatographed on a 1 x 30 cm column of Florisil. The yellow band was eluted with a 1:2 mixture of CH₂Cl₂/hexane, concentrated under vacuum, and diluted with hexane. Upon cooling to -20°C, air-stable, rusty-brown crystals of $[HB(pz)_3](CO)$ ₃WI, 8, resulted (0.22 mg, 10%). Anal. Calcd for C₁₂H₁₀BIN₆O₃W: C, 23.71; H, 1.66; N, 13.83. Found: C, 23.51; H, 1.78; N, 13.73. EIMS (20 eV): m/e 580(M^-C0), $552(M^{+}-2CO)$, $524(M^{+}-3CO)$.

 $\{[HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)(PPh_{3})]\}CF_{3}SO_{3}$, 9 A CH₂C1₂ (30 mL) solution containing $\left\{{\rm HB(pz)}_3({\rm CO})_2{\rm W[n^2-CH(SMe)]}\right\}$ CF₃SO₃, 6, (0.19 g, 0.29 mmol) and PPh₃ (76 mg, 0.29 mmol) was allowed to stir for 15 min. The brownish solution was then evaporated to dryness, and the resulting residue was washed with hexane. Crystallization of this residue from CH₂Cl₂/Et₂0 at -20°C afforded air-stable brown crystals of 9 (0.24 g, 90%). Anal. Calcd for C₃₂H₂₉BF₃N₆0₅PS₂W. (CH₂Cl₂)_{0.3}:

C, 40.85; H, 3.14; N, 8.85. Found: C, 40.80; H, 3.52; N, 8.93. 31_p NMR (CDCl₃): 6 38.68 (J_{WP} = 10.49 Hz). MS(FAB): m/e 775 (parent cation), 719 (parent cation - 2CO). Molar conductivity (CH₂Cl₂): Λ_M = 41.08 a^{-1} cm² mol⁻¹ at 10⁻³ (1:1 electrolyte).⁴²

 ${[\text{HB(pz)}_3](C0)_2\text{W[n}^2-CH(SMe)(PEt_3)]}CF_3SO_3$, 10 This complex was prepared by a route analogous to that used for 9. After the reaction mixture of 6 (0.19 g, 0.29 mmol) and PEt₃ (64 μ L, 0.44 mmol) in 30 mL of CH₂Cl₂ was stirred for 1h, the solvent was removed under vacuum. The resulting solid was washed with hexane and ether and then recrystallized from CH₂Cl₂/Et₂0 at -20°C to give air-stable brown crystals of 10 (0.21 g, 92%). Anal. Calcd for $C_{20}H_{29}BF_{3}N_{6}O_{5}PS_{2}W \bullet (CH_{2}Cl_{2})_{0.3}$: C, 30.26; H, 3.70; N, 10.43. Found: C, 29.99; H, 3.91; N, 10.39. MS(FAB): m/e 631 (parent cation), 575 (parent cation - 2C0), 560 (parent cation - 2C0 - Me). The presence of CH₂Cl₂ in crystals of **7** and 8 was also established by their ¹H NMR spectra.

Reaction of $\left\{\text{HB}(pz)_{3}(CO)_{2}W\left[\pi^{2}-CH(SMe)\left(PEt_{3}\right)\right]\right\}CF_{3}SO_{3}$, 10, with NaH A 5 mL CH₂C1₂ solution containing 10 (16 mg, 0.02 mmol) and dry NaH (1 mg, 0.04 mmol) was allowed to stir for 24 h. $[HB(pz)_3](CO)_2W(\equiv CSMe)$, 1 , in about 90% yield, was identified by the IR spectrum of the reaction mixture. A small amount of $[HB(pz)_{3}]$ (CO)(PEt₃)W(C(O)CSMe), 2, was also obtained from the further reaction of 1 and the liberated $PEt₃$.

$$
\{[HB(pz)_{3}](C0)_{2}W[n^{2}-CH(SMe)(P(0Me)_{3})]\}CF_{3}SO_{3}, 11 \qquad In a
$$

procedure similar to the one used for 9, $P(\text{OMe})_3$ (14 μ L, 0.12 mmol) was allowed to react with $\{[HB(pz)_3](CO)_2W[\pi^2-CH(SMe)]\}CF_3SO_3$, 6, (52 mg, 0.079 mmol) in CH₂Cl₂ (7 mL) for 10 min. Purification as for 10 afforded 11 (55 mg, 90%). However, the product was not sufficiently stable to be obtained pure for elemental analysis. MS(FAB): m/e 637 (parent cation), 622 (parent cation - Me), 566 (parent cation - Me - 2C0).

 ${[\text{HB(pz)}_3](\text{CO})_2\text{W(n}^2-\text{CH(SMe)}(\text{PPh}_2\text{H})]}$ CF₃S0₃, 12 The method used to prepare 9 was also used for this complex. PPh₂H (20 uL, 0.12 $-mmol$) was injected into a 5 mL CH₂C1₂ solution of 6 (56 mg, 0.085 mmol). After the reaction had proceeded for 20 min, the same workup as in the synthesis of 9 was employed. The product was recrystallized from CH₂Cl₂/Et₂0, giving 12 (66.mg, 92%) as an air-stable brown solid. It was characterized by its IR and $¹H NMR$ spectra (Table 1 and</sup> II). MS(FAB): m/e 699 (parent cation), 643 (parent cation - 2C0), 513 (parent cation - PPh_2H).

 $[HB(pz)₃](CO)₂W[n²-CH(SMe)(PPh₂)], 13$ A $CH₂Cl₂$ solution (10 mL) of 12 (0.11 g, 0.13 mmol) was treated with Net_3 (18 uL, 0.13 mmol). After the solution was allowed to stir for 30 min, a reddishyellow solution was obtained. It was diluted with 30 mL of hexane; slow evaporation under reduced pressure furnished a white precipitate $(Et₃NH⁺CF₃SO₃⁻)$. After the salt was removed by filtration through Celite, the solution was evaporated to dryness. The resulting solid

was recrystallized from CH_2Cl_2/h exane at -20°C to give air-stable orange crystals of 13 (82 mg, **90%).** Microscopic crystals were found which were suitable for X-ray analysis. Anal. Calcd for $C_{25}H_{24}BN_6O_2-$ PSW: C, 43.00; H, 3.46; N, 12.04. Found: C, 42.92; H, 3.66; N, 11.79. ${}^{31}P(CDC1_3)$: 610.52. EIMS (20 ev): m/e 698 (M⁺), 642 (M⁺-2C0), 513 $(M^+$ -PPh₂), 457 $(M^+$ -2C0-PPh₂).

Crystal Data and Data Collection [HB(pz)₃](CO)₂W[n²- $CH(SMe)(PPh₂)$], 13: mol wt. 698.20 g/mol, triclinic PI, a = 11.548(14), b = 16.148(7), c = 7.682(5)Å, α = 101.67(6), β = 99.06(7), $\gamma = 70.49(5)$ °, $V = 1316.1(18)$ λ^3 , $Z = 2$, $\rho_{\text{calC}} = 1.761$ g/cm³, $\mu =$ 48.09 cm⁻¹ (MoKa, $\lambda = 0.71069\text{\AA}$, monochromated by a graphite crystal).

An orange crystal of the title compound of approximate dimensions 0.2 X 0.2 X 0.15 mm, was wedged into a Lindeman glass capillary and aligned on an automated four-circle diffractometer (DATEX) designed and built at the Ames Laboratory. Four preliminary ω -oscillation photographs were taken at various ϕ positions, and the coordinates of 12 independent reflections were input to the automatic indexing procedure ALICE.⁴³ The resulting triclinic reduced cell and reduced cell scalars indicated no transformation to a higher symmetry group. Inspection of the axial u-oscillation photographs confirmed the triclinic cell noted above and also indicated that the crystal was an aggregate of at least three slightly misoriented grains of various sizes. Other crystals tried earlier showed a similar tendency even to a greater extent. The orientation matrix for the data collection was determined by centering the strongest in each cluster of reflections.

i.e., focusing only the largest grain. Unit cell parameters were obtained by a least-squares fit to 2e values of 12 independent high angle reflections on the diffractometer mentioned above.

All data within a sphere of $2\theta < 45^\circ$ (4125 reflections) were measured using an u-stepscan procedure. The intensity data were corrected for Lorentz and polarization effects. Empirical absorption corrections were made using ϕ -scan data for a reflection at $\chi \equiv$ 90°. Equivalent data were averaged $(R_{\text{ave}} = 4.9\%)$, yielding 2015 independent observed reflections ($F > 3\sigma_F$).

Structural Solution and Refinement⁴⁴ The position of the tungsten atom was obtained from analysis of a Patterson function assuming the centrosymmetric space group. The remaining atoms were found by successive structure factor and electron density map calculations. The positions of the hydrogen atoms were calculated assuming ideal geometries with C-H and B-H bond distances set at 1.00Â and 1.26Â, respectively. The positional and anisotropic thermal parameters for most of the nonhydrogen atoms were refined by block/full-matrix least-squares procedures, minimizing the function \sum_{α} $(\vert F_{\alpha} \vert - \vert F_{\alpha} \vert)^2$, where $\omega = 1/\sigma_F^2$, to R = $\Sigma \vert \vert F_{\alpha} \vert - \vert F_{\alpha} \vert \vert/ \Sigma \vert F_{\alpha} \vert = 0.088$ and Rw = $\left[\sum_{\omega}(|F_{\Omega}|-|F_{\Omega}|)^{2}/\sum_{\omega}|F_{\Omega}|^{2}\right]^{1/2} = 0.108$. Six nonhydrogen atoms, $C(1)$, $C(2)$, $C(3)$, $C(4)$, $C(53)$, and $N(21)$, were refined isotropically because of difficulties in assigning physically meaningful anisotropic temperature factors. In the last stage of the refinement, 15 reflections were noticed to have large discrepancies in $\|F_{0}^{\cdot}\| - \|F_{c}^{\cdot}\|$ and excluded due apparently to the poor crystal quality.

The final atomic parameters are listed in Table IV, while selected bond lengths and bond angles are listed in Tables V and VI, respectively. $\hat{\mathcal{A}}$

REFERENCES

- 1. (a) Pickering, R. A.; Jacobson, R, A.; Angelici, R. J. J. Am. Chem. Soc. 1981, 103, 817. (b) McCormick, F. B.; Angelici, R. J. Inorg. Chem. 1981, 20, 1118. (c) McCormick, F. B.; Angelici, R. J. <u>Inorg. Chem.</u> 1981, 20, 111. (d) Yu, Y. S.; Angelici, R. J. Orqanometallics 1983, 2, 1018. (e) Yu, Y. S.; Angelici, R. J. Orqanometallics 1983, 2, 1583. (f) Steinmetz, A. L.; Hershberger, S. A.; Angelici, R. J. Organometallics 1984, 3, 461. (g) Singh, M. M.; Angelici, R. J. Inorq. Chem. 1984, 23, 2691. (h) Matachek, J. R.; Angelici, R. J.; Schugart, K. A.; Haller, K. J.; Fenske, R. F. Organometallics 1984, 3, 1038.
- 2. (a) Dombek, B. D.; Angelici, R. J. Inorg. Chem. 1976, 15, 2397. (b) Greaves, W. W.; Angelici, R. J.; Helland, B. J.; Klima, R.; Jacobson, R. A. J. Am. Chem. Soc. 1979, 101, 7618. (c) Quick, M. H.; Angelici, R. J. Inorq. Chem. 1981, 20, 1123. (d) Schroeder, N.; Richardson, J. W., Jr.; Wang, S. L.; Jacobson, R. J.; Angelici, R. J. Orqanometallics 1985, 4, 1226.
- 3. Greaves, W. W.; Angelici, R. J. Inorq. Chem. 1981, 20, 2983.
- 4. Kim, H. P.; Kim, S.; Jacobson, R. A.; Angelici, R. J. Orqanometallics 1984, 3, 1124.
- 5. Desmond, T.; Lalor, F. J.; Ferguson, G.; Parvez, M. J. Chem. Soc., Chem. Commun. 1984, 75.
- 6. Clark, G. R.; Collins, T. J.; Marsden, K.; Roper, W. R. J. Orqanomet. Chem. 1983, **259,** 215.
- 7. For example, see the following: (a) Fischer, E. 0.; Clough, R. L.; Besl, G.; Kreissl, F. R. Anqew. Chem., Int. Ed. Engl. 1976, 15, 543. (b) Fischer, E. O.; Stückler, P.; Kreissl, F. R. <u>J.</u> Organomet. Chem. 1977, 129, 197. (c) Fischer, E. 0.; Meineke, E. W.; Kreissl, F. R. Chem. Ber. 1977, 110, 1140. (d) Fischer, E. 0.; Frank, A. Chem. Ber. 1978, 111, 3740. (e) Fischer, E. 0.; Schambeck, W. J. Orqanomet. Chem. 1980, 201, 311. (f) Kostic, N. M.; Fenske, R. F. J. Am. Chem. Soc. 1981, 103, 4577. (g) Kostic, N. M.; Fenske, R. F. Orqancmetallics 1982, 1, 489. (h) Fischer, E. 0.; Wittman, 0.; Himmelreich, D.; Schubert, U.; Ackermann, K. Chem. Ber. 1982, 115, 3141. (i) Fischer, H. In "Transition metal Carbene Complexes"; Dötz, K. H.; Fischer, H.; Hoffman, P.; Kreissl, F. R.; Schubert, U.; Weiss, K., Eds.; Verlag Chemie: Weinheim, 1983; pp 18-23. (j) Fischer, H.; Motsch, A.; Markl, R.; Ackermann, K. Orqanometallics 1985, 4, 726.
- 8. (a) Fischer, E. 0.; Ruhs, A.; Kreissl, F. R. Chem. Ber. 1977, 110, 805. (b) Kreissl, F. R.; Stückler, P.; Meineke, E. W. Chem Ber. 1977, 110, 3040. (c) Kreissl, F. R.; Uedelhoren, W.; Kreis, G. Chem. Ber. 1978, 111, 3283.
- 9. (a) Uedelhoven, W.; Eberl, K.; Kreissl, F. R. Chem. Ber. 1979, 112, 3376. (b) Kreissl, F. R.; Sieber, W. J.; Alt, H. G. Chem. Ber. 1984, 117, 2527. (c) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. J. Am. Chem. Soc. 1985, 107, 4474. (d) Brower,

D. C.; Birdwhistell, K. R.; Templeton, J. L. Organometallics 1986, 5, 94.

- 10. Kreissl, F. R.; Sieber, W. J.; Wolfgruber, M. Z. Naturforsch., B: Anorq. Chem., Org. Chem. 1983, 38B, 1419.
- 11. Churchill, M. R.; Wasserman, H. J.; Holmes, S. J.; Schrock, R. R. Organometallics 1982, 1, 766.
- 12. Kreissl, F. R.; Sieber, W. J.; Hoffman, P.; Riede, J.; Wolfgurber, M. Organometallics 1985, 4, 788.
- 13. Templeton, J. L.; Ward, B. C. J. Am. Chem. Soc. 1980, 102, 3288.
- 14. Winston, P. B.; Nieter, S. J. N.; Templeton, J. L. Organometallics 1983, 2, 167.
- 15. Kim, H. P.; Angel ici, R. J. the following paper.
- 16. Clark, G. R.; Marsden, K.; Roper, W. R.; Wright, L. J. J. Am. Chem. Soc. 1980, 102, 6570.
- 17. Kreissl, F. R.; Sieber, W. J.; Wolfgruber, M. J. Organomet. Chem. 1984, 270, C45.
- 18. Curtis, M. 0.; Shiu, K.-B. Inorg. Chem. 1985, 24, 1213.
- 19. McCormick, F. B.; Gladysz, J. A. J. Organomet. Chem. 1981, 218, C57.
- 20. Collins, T. J.; Roper, W. R. J. Organomet. Chem. 1978, 73.
- 21. Silverstein, R. M.; Sassier, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds", 4th ed.; Wiley: New York, 1981; pp 272-3.
- 22. Nelson, G. 0.; Brookhart, M. J. Am. Chem. Soc. 1977, 99, 6099.
- 23. Holmes, S. J.; Clark, D. N.; Turner, H. W.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 6322.
- 24. Abel, E. W.; Orrell, K. G.; Bhargava, S. K. Prog. Inorq. Chem. 1984, 32, 1.
- 25. (a) Brown, F. J. Prog. Inorq. Chem. 1980, 27, 1. (b) Casey, C. P. Reactive Intermediates 1981, 2, 135; Reactive Intermediates 1985, 3, 109.
- 26. (a) Bodnar, T.; Cutler, A. R. J. Organomet. Chem. 1981, 213, C31. (b) Casey, C. P.; Miles, W. H.; Tukada, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761.
- 27. Casey, C. P.; Palichnowski, S. W.; Schusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282.
- 28. (a) In "Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis"; J. G. Verkade; L. D. Quin, eds.; Verlag Chemie: 1986, in press. Chapter 11. (b) Albrand, J. P.; Gagnaire, D.; Robert, J. B. J. Chem. Soc., Chem. Commun. 1968, 1469.
- 29. Tolman, C. A. Chem. Rev. 1977, 77, 313.
- 30. Reference 21, p 199.
- 31. (a) Grim, S. 0.; Wheatland, D. A.; McFarlane, W. J. Am. Chem. Soc. 1967, 89, 5573. (b) Grim, S. 0.; Wheatland, D. A. Inorq. Chem. 1969, 8, 1716.
- 32. (a) Mainz, V. V.; Anderson, R. A. Orqanometallics 1984, 3, 675 and references therein, (b) Gibson, V. C.; Grebenik, P. 0.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1983, 1101. (c) Etienne, M.; Choukroun, R.; Basso-Bert, M.; Dahan, F.; Gervais,

D. Nouv. J. Ch1m. 1984, 8, 531. (d) Schore, N. E.; Young, S. J.; Olmstead, M. M. Organometallics 1983, 2, 1769. (e) Fischer, E. 0.; Reitmeier, R. **1.** Naturforsch., B: Anorq. Chem., Org. Chem. 1983, 38B, 582.

- 33. Kreissl, H.; Fischer, E. 0.; Kreiter, C. G.; Fischer, H. Chem. Ber. 1973, 106, 1262.
- 34. Pickering, R. A.; Angel ici, R. J. J. Orqanomet. Chem. 1982, 225, 253.
- 35. Churchill, M. R.; Youngs, W. J. Inorq. Chem. 1979, 18, 2454.
- 36. Forder, R. A.; Gale, G. D.; Prout, K. Acta Cryst. 1975, B31, 307.
- 37. Kojima, T.; Nachikawa, T. J. J. Phys. Soc. Jpn. 1957, 680.
- 38. (a) Pierce, L.; Hayashi, M. J. J. Chem. Phys. 1961, 479. (b) Sijima, T.; Tsuchiya, S.; Kimura, M. Bull. Chem. Soc. Jpn. $\mathcal{L}_{\mathcal{A}}$ 1977, 2564.
- 39. Pelizzi, C.; Pelizzi, G. Acta Cryst. 1979, B35, 1785.
- 40. Least squares plane of W-S-C(3): -1.659x 10.624y + 6.570z + $0.599 = 0$; W.000; S.000; C(3).000; P-1.436; C(4) 1.722.
- 41. Gansow, 0. A.; Burke, A. R.; LaMar, G. N. J. Chem. Soc., Chem. Commun. 1972, 456.
- 42. (a) $(n-Bu)_{4}NBF_{4}$, Molar Conductivity (CH₂Cl₂): $\tilde{\Lambda}_{M}$ = 28.69 Ω^{-1} cm² mol^{-1} at 10^{-3} M. (b) Muetterties, E. L.; Alegrant, C. W. J. Am. Chem. Soc. 1972, 94, 6386.
- 43. Jacobson, R. A. J. Appl. Cryst. 1976, 9, 115.
- 44. Calculations were carried out on a VAX 11/780 computer. Structure factor calculations and least squares refinements were

done using the block matrix/full matrix program ALLS (R. L. Lapp and R. A. Jacobson, U.S. Department of Energy Report IS-4708, Iowa State University, Ames, Iowa, 1979), Fourier series calculations were done using the program FOUR (D. R. Powell and R. A. Jacobson, U.S. Department of Energy Report IS-4737, Iowa State University, Ames, Iowa, 1980), and for molecular drawings the program ORTEP (C. K. Johnson, U.S. Atomic Energy Commission Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn, 1970) was used. An empirical absorption correction was carried out using diffractometer ϕ -scan data and the program ABSN (B. A. Karcher, Ph.D. Dissertation, Iowa State University, 1981).

SECTION III. REACTIONS OF THE THIOCARBENE COMPLEX $[HB(pz)₃](CO)_{2}$ W[n²-CH(SMe)]⁺ WITH SULFUR. CARBON, AND NITROGEN NUCLEOPHILES

INTRODUCTION

The thiocarbene complex $Cp(C0)_2Fe[=CH(SMe)]^+$, $Cp = n^5-CgHg$, reacts with a variety of nucleophiles to give a range of products (Scheme I).^{1,2} All of the reactions are presumed to proceed by

initial attack at the carbene carbon atom. In recent **papers,**^'4 we reported the preparation of the thiocarbene complex $[HB(pz)₃](C0)₂W \lceil n^2$ -CH(SMe)]⁺, 2, in which the [CH(SMe)] carbene ligand is coordinated to the W via both the carbene C and S atoms. Only one other n^2 thiocarbene complex $\{(\text{PPh}_3)_2[\text{CN}(4-C_6H_4\text{CH}_3)](\text{C1})0s[\pi^2-\text{C}(S\text{Me})(4-\pi)\}$ $C_6H_4CH_3$)]}ClO₄⁵ has been reported. Very little is known about the

reactivities of either of these complexes. Like the simple n^1 carbene complex Cp(CO)₂Fe[CH(SMe)]⁺,^{1,2} 2 reacts with phosphorus donors, L (PPh₃, PEt₃, PPh₂H, P(OMe)₃), to give carbene adducts $[HB(pz)_{3}]$ (CO)₂W[n²-CH(SMe)L]⁺, in which both the C and S atoms remain coordinated to the W (eq 1).⁴ The phosphonium proton

in $[HB(pz)_3](CO)_{2}W[n^2-CH(SMe)(PPh_2H)]^+$ is removed by NEt₃ to give [HB(pz)₃](CO)₂W[n²-CH(SMe)(PPh₂)], whose structure was established by an X-ray diffraction study.⁴ In the present report, we describe reactions of 2 with compounds having nucleophilic S, C, and N atoms.

RESULTS AND DISCUSSION

Reactions of
$$
\left[\text{HB(pz)}_{3}\right](\text{CO})_{2}W\left[\pi^{2}-\text{CH(SMe)}\right]\text{CF}_{3}\text{SO}_{3}
$$
, 2, with Bases

or Reducing Agents Most of the reactions of 2 described in the preceding paper involve nucleophilie addition to the carbene carbon atom. Nucleophiles are also bases. In fact, there are some Lewis bases that give no product resulting from nucleophilic addition. Thus, the bases, dry NaH, NaBH_A, NaOMe, NaOPh, PPNSH, NaSCH₂Ph, NaSePh, LiCH₃, NEt₃, K₂CO₃, NH₂NH₂, NHMeNH₂, and NHMeNHMe, react with 2 to give $[HB(pz)_3]$ (CO)₂W(\equiv CSMe), 1 (10-20%), and $[HB(pz)_3](CO)_{2}W[\pi^2-CH(SMe)_2]$, 3 (5-40%), according to eq 2. The highest yield of 1 (90%) is found when 2 is reacted with NaSCH₂Ph. As

$$
2 + \text{Bases} \longrightarrow [\text{HB(pz)}_3](\text{CO})_2\text{W} = \text{C-S}_{\text{Me}} + [\text{HB(pz)}_3](\text{CO})_2\text{W}_{\text{C}}^{\text{Me}} \times \text{C}_{\text{C}}^{\text{Me}}
$$
\n
$$
\text{Reducing} \qquad \text{SMe} \qquad (2)
$$

 $\mathbf{1}$

 $\overline{3}$

discussed in the following sections, 1 and 3 are side products of reactions with other nucleophiles; presumably they are formed according to eq 2.

The reducing agent, sodium naphthalenide, also produces 1 (10%) and 3 (40%). Thus, it is possible that some or all of the nucleophiles noted above behave as reducing agents, although no attempt was made to identify oxidation products. There is no evidence

for CO-containing products other than 1 and 3. While the mechanism of reaction 2 is unclear, transfer of MeS⁻ from 2 to form 3 must be involved and is presumably related to the demonstrated good leaving group ability of MeS⁻ in thiocarbene complexes.^{2,6}

Reactions of $\left[\begin{matrix}HB(pz)_{3}\end{matrix}\right]$ (CO)₂W[n²-CH(SMe)]]CF₃SO₃, with SR⁻ Complex 2 reacts readily with mercaptides to give the corresponding air-stable bis(organothio)methyl complexes 3-5 in about 90% yield (eq 3). The reaction appears to be a simple nucleophilic addition of the

$$
2 + SR^-\longrightarrow [HB(pz)_{3}](CO)_{2}W\underset{SR}{\underbrace{K\longrightarrow K}}^{Me}
$$
\n(3)

R 3, Me 4, Et 5, i-propyl

mercaptide to the carbene carbon.⁷ Similar reactions of $Cp(C0)_{2}Fe[CH(SMe)]^{+2}$ and $Cp(C0)_{2}Fe[C(SMe)_{2}]^{+6a}$ have also been reported. The thiocarbyne compound 1 is also obtained from reaction 3 in 5% yield. With SCH₂Ph⁻ and SH⁻, only the base reaction (eq 2) occurs yielding 1 and 3.

IR, 1 H, and 13 C NMR spectra of 3 (Tables I-III) show two sets of peaks, suggesting the presence of two isomers. The isomers could not

Complex	IR $\sqrt{(0)}$, cm ⁻¹
$[HB(pz)3](C0)2W(\equiv CSMe), (1)$	1980 s, 1888 s
${[\text{HB(pz)}_3](00)_2\text{W[n}^2-\text{CH(SMe)}]}$ CF ₃ SO ₃ , (2)	2067 m, 1996 s
[HB(pz) ₃](CO) ₂ W[n ² -CH(SMe) ₂], [3(A)] [3(B)]	1937 s, 1832 s ^a 1957 w, 1821 w ^a
$[HB(pz)3](C0)2W[CH(SMe)(SEt)], [4(A)]$ [4(B)]	1936 s, 1833 s ^a 1958 w, 1820 w ^a
[HB(pz) ₃](CO) ₂ W{CH(SMe)[SCH(Me) ₂]}, [5(A)] [5(B)]	1935 s, 1832 s ^a 1958 w, 1820 w ^a
${[\text{HB(pz)}_{3}](00)_{2}W[n^{2}-CH(Set)]\}CF_{3}SO_{3}$, (6)	2065 m, 1990 s
$[HB(pz)_{3}] (CO)_{2}W\{\pi^{2}-CH(SMe)[CH(CO_{2}Me)_{2}]\}, (7)$	1932 s, 1805 s, 1747 m, 1730 m
$[{HB(pz)_{3}](C0)_{2}W[n^{2}-CH(SMe)(NC_{5}H_{5})}]$ CF ₃ SO ₃ , (8)	1957 s, 1823 s
$\{[HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)(4-NC_{5}H_{4}Me)]\}CF_{3}SO_{3}$, (9)	1955 s, 1819 s
$\{[HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe) [4-NC_{5}H_{4}N(Me)_{2}]]\}CF_{3}SO_{3},$ (10)	1953 s, 1813 s
$[HB(pz)_{3}] (CO)_{2}W (\equiv CNMe_{2})$, (11)	1941 s, 1837 s
$[HB(pz)_{3}] (CO)_{2}W (\equiv CNEt_{2}), (12)$	1938 s, 1831 s
$[HB(pz)_{3}]$ (CO) ₂ W(=CNHMe), (13) ^{b,C}	1943 s, 1837 s

Table I. IR Data for the Complexes in CH_2Cl_2 Solvent

aHexane solvent.

 \sim \sim

 $b_v(CN):2125$ cm⁻¹.

 $\left[{}^{c}[HB(pz)_{3}](CO)_{2}(H)W(CNR)$ tautomer present; see text.

Table I (Continued)

 $d_v(CN):2118 \text{ cm}^{-1}$. e_v (CN):2090 cm⁻¹. $f_v(CN):2100$ cm⁻¹. $9v(CN):2100 \text{ cm}^{-1}$.

Complex	H3 of pz	H4 of pz	H ₅ of pz	other
1 _p	7.91(br)	6.23(br)	7.65(br)	2.69(SMe)
$\overline{2}$	8.07 $(d, J=2.21)$ $(t, J=2.37)^C$ 7.94	6.50 6.47 $(t, J=2.90)^C$ $(t, J=2.35)^C$	7.91 $(d, J=2.36)$ 7.83 $(d, J=2.14)$ 7.81 $(d, J=2.07)$	12.78 $(s, J_{\text{M}}=19.83, \text{CH}),$ 2.37(SMe)
3(A)	8.10	6.24 $(d, d=1.58)$ $(t, d=2.20)^C$	7.65 $(d, J=2.37)$	4.89 $(s, J_{\text{WH}} = 3.46, \text{ CH}),$ 2.47 (CSMe), 2.35(WSMe)
3(B)	not resolved	6.26(br)	7.69 $(d, J=2.17)$	5.39 (CH), $2.59(CSMe)$, 1.57 (WSMe)
4(A)	8.13(br)	6.23 $(t, J=2.23)^C$	7.65 $(d, J=1.98)$	4.82(s, $J_{\text{WH}} = 3.91$, CH), 2.71 $(q, \overline{d} = 7.42, \text{SCH}_2)$, $2.44(SMe)$, $1.38(t, J=7.44, Me)$

Table II. $^{-1}$ H NMR Data for the Complexes in CD₂Cl₂ solvent at Room Temperature ^a

^Chemical shifts in 6 and coupling constants in Hz.

 b CDCl₃ solvent.

 $\ddot{}$

^Due to overlapping d of d.

 $\frac{8}{2}$

 $\mathcal{L}(\mathcal{L})$

 \mathcal{L}

 $d_{CD_3NO_2}$ solvent.

 \mathcal{C} Values in square brackets correspond to the [HB(pz)₃](CO)₂(H)W(CNR) tautomer; other values are for $[HB(pz)_{3}]$ (CO) \mathcal{N} (\in CNHR) tautomer.

 $\frac{8}{4}$

Table II (Continued)

 \mathbf{r}

 Δ

 \bullet

 ϵ

 $\mathbf{\overset{\circ}{g}}$

Table III. 13 C NMR Data for the Complexes in CD₂Cl₂ Solvent at Room Temperature^a

aChemical shifts in ppm and coupling constants in Hz.

 b CDCl₃ solvent.

be separated by column chromatography or recrystallization. The relative ratio of the major isomer (A) to minor isomer (B) was obtained by integration of the methine protons (CH). The ratio of these two isomers of 3 depends on the solvent and temperature; the ratio is 14:1 at 25°C in CgOg, 7:1 at 25°C in **CDCI3,** 6:1 at 25°C in CD₂Cl₂, 5:1 at 25°C in $\left(\begin{smallmatrix}CD_3\end{smallmatrix}\right)_2$ CO, 4:1 at 25°C in $\left(\begin{smallmatrix}CD_3N0_2\end{smallmatrix}\right)$, and 3:1 at 50°, 70°, 85° in CD_{3} NO₂ solution.

The isomers presumably result from inversion at the coordinated sulfur atom (eq 4). The major isomer (A) of 3 probably has the structure in which the sulfur donor $(SR, R = Me)$ adds to the carbene

carbon on the side opposite the Me on the sulfur atom, which is also on the side opposite the bulky $[HB(pz)_3]$ group; this structure would be essentially the same as that of $[HB(pz)_{3}]$ (CO)₂W[n²-CH(SMe)(PPh₂)] (Figure 1), 4 except SMe replaces PPh_2 . Inversion of the sulfur atom has been observed in numerous sulfide (e.g., R₂S and RSCH₂CH₂SR) complexes;^{8a} the coalescence temperatures for pyramidal inversion in the complexes $W(C0)_{5}$ (PhCH(Me)SCH₃)^{8b} and (C0)₄W(PhCH₂SCH₂CH₂SCH₂Ph)^{8c} are -76.5°C (ΔG^{\ddagger} = 28.0 kJ/mol) and 27°C (ΔG^{\ddagger} = 51.5 kJ/mole), respec-

tively. The SMe peaks of the two isomers of 3 do not coalesce up to 85°C in CD₃NO₂. The high coalescence temperature for 3 may be caused by the three-membered ring which has been found to increase the inversion barrier in trans-PdCl₂($SCMe₂CMe₂$)₂.^{8d} Two noninterconverting isomers were also observed for the 3-membered ring complex, (dppe)(CO)₃W[CH(SR)(SR)]⁺;^{8e} these were likewise ascribed to E and Z isomers resulting from inversion at the coordinated sulfur atom. IR and 1 H NMR spectra (Tables I and II) reveal the presence of two isomers for 4 and 5 also. The relative ratios of the two isomers of 4 and 5 at 25°C in CD₂CI₂ are 8:1 and 3:1, respectively.

Although the isomers of 3-5 may result from inversion at the sulfur, it is not possible to discount the possibility that they arise from rotation of the whole n^2 -CH(SMe)(SR) unit around an axis from the W to the center of the n^2 -C-S bond. A similar three-membered ring $(n^2-CH_2PMe_2)$ rotation was proposed in $(PMe_3)_4$ WH(n²-CH₂PMe₂).⁹

A third isomerization process to be considered is that involving cleavage of the C-S bond in the n^2 -CH(SMe)(SR) ligand to give the carbene-mercaptide complex W[=CH(SR)](SMe), which could interchange the positions of the H and SR groups by rotation around the $W[=CH(SR)]$ carbene bond. In another context, Headford and Roper¹⁰ has proposed such a C-X $(X = 0, Se, Te)$ cleavage. Although this type of isomerization cannot be dismissed, it seems less likely than the other two possibilities.

The SMe carbene compound 2, $[HB(pz)_{3}] (CO)_{2}W[\eta^{2}-CH(SMe)]^{+}$, reacts with SEt⁻ to give $[HB(pz)_{3}](CO)_{2}W[CH(SMe)(SET)]$, 4; no $[HB(pz)_{3}](CO)_{2}$ -

W[CH(SMe)(SEt)] is detected in this reaction. Likewise, the SEt carbene compound 6, $[HB(pz)₃](CO)₂W[\pi²-CH(SEt)]⁺, reacts with SMe⁻ to$ give $[HB(pz)_{3}](CO)_{2}W[CH(SMe)(SEt)]$;¹¹ no 4 is detected in this reaction. No interconversion of 4 to $[HB(pz)₃](CO)$ ₂W[CH(SMe)(SEt)] or vice versa occurs at room temperature. Therefore, scrambling of the bound (SMe) and dangling sulfide (SEt) groups does not occur in 4 and probably also not in 3 and 5. Other results also suggest the W-S bond is inert; 3 does not react with CO (1 atm, 30° C, 30 min, CH_2Cl_2) nor PEt₃ (25°, 1 h, CH_2Cl_2). An attempt to cleave the W-S bond in 2 with CO (80 psig, 40°C, 22 h) was also not successful. Thus, the W-S bond is robust in 3 and 2.

One of the MeS⁻ groups is removed quantitatively from $[HB(pz)₃](CO)₂W[n²-CH(SMe)₂]$ upon treatment with Ph₃CBF₄ (eq 5). The reaction of 3 with CF_3SO_3H also yields 2 (eq 5), but in only 20% yield; decomposition is also observed. Compound 4 reacts with Ph_3CBF_4 to form both the thiomethyl 2 (30%) and thioethyl 6 carbene (70%)

products (eq 6). The reaction of 4 with CF₃SO₃H also gives 2 (10%) and 6 (10%) (eq 6). The identity of 6 was established by comparing its 1_H NMR spectrum with an authentic sample of this compound

prepared by the reaction of $[HB(pz)_3](CO)_{2}W(\equiv CSET)$ with $CF_{3}SO_{3}H$. Although it might seem that the uncoordinated SEt would be abstracted by Ph₃CBF₄ or CF₃SO₃H more readily than the bound sulfide (SMe), the product distribution establishes that the SMe group is removed preferentially. As noted above, 4 does not isomerize to $[HB(pz)₃](CO)₂W[CH(SMe)(SEt)]$ at these temperatures: thus, this isomerization of 4 cannot account for the formation of both 2 and 6. It is possible that both the coordinated (SMe) and uncoordinated (SEt) groups are abstracted at about the same rates or Ph_3C^+ and H^+ oxidize 4 to give a radical intermediate which interconverts the SMe and SEt groups. There is, however, no direct evidence for either of these mechanistic possibilities.

Reaction of $[HB(pz)_{3}]$ (CO)₂W[n²-CH(SMe)]⁺, 2, with CH(CO₂Me)₂⁻ Carbanions are known to add to carbene carbon centers.¹² Similarly,

the n^2 -carbene of 2 reacts with the carbanion, CH(CO₂Me)₂, to produce the air-stable malonate adduct 7 in 92% yield (eq 7). The more

nucleophilic MeLi, however, does not form an adduct but, gives the typical base reaction (eq 2) products 1 and 3. In the 1 ^H NMR spectrum of 7, the two Me groups of the malonate are nonequivalent *(s* 3.80, 3.79) due to the chiral center at the methine carbon. 13 The large coupling constant $({}^3J_{HH} = 10.35$ Hz) of the two methine hydrogens suggests that the H atoms are anti to each other; 14 this configuration minimizes repulsion between the two $CO₂Me$ groups and the CO ligands.

Reactions of $[HB(pz)₃](C0)₂W[n²-CH(SMe)]⁺, 2, with Pyridines$ Pyridine (py) is known to form carbene adducts such as $Cp(C0)$ ₂Fe[CH(SMe)(py)]⁺² and $Cp(NO)$ (PPh₃)Re[CH₂(py)]⁺.¹⁵ In contrast to these adduct-forming reactions, 2 reacts at room temperature with tertiary amines such as $Et₃N$ to give 1 (10%) and 3 (30%) according to

eq 2. Even though there is no spectroscopic evidence for it, 3

probably results from initial formation of the adduct $[HB(pz)_{3}]$ - $(CO)_{2}W[\pi^{2}-CH(SMe)(NEt_{3})]^{+}$ followed by transfer of a MeS⁻ group to another carbene ligand, as suggested for related reactions of iron thiocarbene complexes with tertiary **amines.**^*6

The n^2 -carbene compound, 2, combines with pyridine (pK_a = 5.2) at room temperature (eq 8) to form an unstable adduct, 8, which was only characterized by its IR spectrum (Table I). Even with excess pyridine (4.2 equivalents), the reaction is not complete after 2 h of stirring. The pyridine adduct 8 decomposes (eq 8) to the thiocarbyne compound 1 within 2 h at room temperature in solution in the presence of pyridine (4.2 equivalents).

Compound 2 also forms an adduct 9 with 4-picoline $(pK^2_a = 6.1)$ according to eq 8. The 4-picoline complex **9** undergoes transformation to the thiocarbyne compound 1 in the presence of 4-picoline (1 equivalent) in CD_2Cl_2 solution within 5 h. The reaction of 2 with 4-

dimethylaminopyridine (pK_a = 9.7) gives an air-stable isolable adduct 10 (eq 8) in **90%** yield. No conversion of 10 to 1 in the presence of excess 4-dimethylaminopyridine (10 equivalents) is observed. However, the reaction of 10 with 4 equivalents of NaOMe ($pk_a = 16$) gives 1 within 5 min. Thus, the conversion of 8, 9, and 10 to 1 (eq 8) requires a base, presumably to remove the methine proton. The strength of the base required appears to depend on the donor ability of the pyridine in the adduct. For pyridine and 4-picoline which are relatively weak donors, excess pyridine or 4-picoline are sufficiently strong bases to cause the conversion of 8 and 9 to 1. For the adduct, 10, of the much more basic 4-dimethylaminopyridine, the much stronger base NaOMe is required. Related to the conversion of 8, 9, and 10 to 1 is the similar deprotonation of the methine hydrogen in $[HB(pz)_3](CO)_{2}W[n^2-CH(SMe)(PEt_3)]^+$ with NaH to give 1 in. 90% yield.⁴ In all of these reactions, it appears that deprotonation of the adduct gives an unstable intermediate which loses the pyridine or phosphine and rearranges to carbyne 1. In contrast to these deprotonations, base reactions of 2 with NaH or NaOMe (eq 2) produce both 1 (10%) and 3 (40% and 30%, respectively). The formation of 3 in the latter reaction is apparently blocked in the deprotonation reactions of the adducts of 2.

The IR spectra of $8 - 10$ show two strong $v(C0)$ absorptions (8; 1957, 1823 cm^{-1}) close to those observed for the adducts $[HB(pz)₃](CO)₂W[n²-CH(SMe)L]$ ⁺ (e.g., L = P(0Me)₃; 1955, 1826 cm⁻¹).⁴ However, the methine proton resonance of 10 at *s* 7.34 is considerably

more deshielded than the corresponding signal in the adducts $[HB(pz)₃](C0)₂W[n²-CH(SMe)L]$ (e.g., L = P(OMe)₃; 6 5.45).⁴ Reaction of $[HB(pz)₃](CO)₂W[n²-CH(SMe)]⁺, 2, with NHR₂$

Secondary amines $(HNR₂)$ replace^{6b, 16} a thioalkoxy group in $Cp(C0)$ ₂Fe[C(SMe)₂]⁺ to give aminothiocarbenes $Cp(C0)$ ₂Fe[C(SMe)(NR₂)]⁺ and MeSH. Similar reactions of other **n**^-thiocarbene complexes have also been reported.^{2,17} In contrast, 2 reacts with NHR₂ (R = Me, Et) to produce air-stable aminocarbyne compounds in about 30% yield (eq 9). Compound 3 is also obtained as a side product in this reaction.

12, Et

The amine, NHR₂, presumably initially gives the adduct (eq 9), then deprotonation of NHR₂ takes place with another mole of NHR₂. Finally, ring-opening with elimination of HSMe yields the aminocarbyne **product.** The **average** ν (CO) frequency of $[HB(pz)_{3}]$ (CO)₂W(=CNEt₂) (1956, 1864 $cm^{-1}/$ hexane) is 9 cm^{-1} lower than that of the **corresponding Cp complex Cp(CO)₂W(≡CNEt₂) (1958, 1880 cm⁻¹/hexane), ¹⁸**

suggesting that $HB(pz)$ ₃ is a better electron donor than Cp, as observed previously.¹⁹ The chemical shift of the carbyne carbon atom $($ δ 254.61 ppm) in the ¹³C NMR spectrum of 12 is similar to those in $[HB(pz)_3](CO)_{2}W(\equiv CSMe)$ (6 264.4)²⁰ and Br(CO)_{*A}W*(\equiv CNEt₂) (6</sub> 235.62).²¹ The structures of 11 and 12 (Figure 2) suggest that two of the pyrazolyl groups are different than the other. Indeed, 1 H NMR spectra of 11 and 12 at -63°C show two identical and one different pyrazolyl group (Figure 3). As the temperature is increased, the pyrazolyl signals broaden and coalesce and are equivalent at room temperature (Table II). These spectral changes suggest the $HB(pz)_{2}$ ligand is rotating or the two CO and the carbyne groups are rapidly exchanging positions at room temperature. Rapid rotation of the HB(pz)₃ group has been proposed in [HB(pz)₃](CO)₂Mo(n^3 -CH₂CRCH₂), R = Me or $Ph₅^{22}$ the limiting high- and low-temperature spectra (R=Me) were obtained at +50 and -40°C, respectively.

Varying degrees of $HB(pz)$ ₃ ligand fluxionality have been observed in other compounds in our studies. The energy barrier for rotation of the HB(pz)₃ ligand around the B-H axis is found to be sensitive to the electronic environment at the metal center. Most cationic complexes such as $[HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)]^{+}$, $[HB(pz)_{3}](CO)_{2}W[n^{2}-$ CH(SMe)(PPh₃)]⁺,⁴ and [HB(pz)₃](CO)(PEt₃)W(MeOC=CSMe)⁺⁴ show inequivalence of all three pyrazolyl rings in $¹$ H NMR spectra taken at</sup> room temperature, suggesting that rotation is slow on the NMR time scale. Whereas, electron-richer neutral complexes such as 3, 11, 12, $[HB(pz)₃](C0)₃WX$, $(X = C1, I)$,⁴ and $[HB(pz)₃](C0)₂W[n²-CH(SMe)(PPh₂)]⁴$

show equivalence of all three pyrazolyl rings in $¹H$ NMR spectra taken</sup> at room temperature. The intermediate stage, broadening of the pyrazolyl ring peaks is observed in the room temperature 1_H NMR spectra of $[HB(pz)_{3}](CO)_{2}W[\pi^{2}-CH(SMe)(PEt_{3})]^{+}$, 4 9, and 10.

The above variations of $HB(pz)_3$ fluxionality may, in general, reflect the Lewis acidity of the metal center. In cases where the metal has the highest acidity, the N donors of the HB(pz)₃ ligand are bound more strongly, and fluxionality is not observed at room temperature. In more electron-rich complexes, which generally have a zero charge and the metal is not as acidic, the pyrazolyl groups are not bound to the metal as strongly and fluxionality is observed. These trends are illustrated by 2 and its adducts: (1) $[HB(pz)₃](C0)_{2}W[n^{2}-CH(SMe)]^{+}$ and $[HB(pz)₃](C0)_{2}W[n^{2}-CH(SMe)(PPh_{3})]^{+}$ are not fluxional at room temperature; (2) $[HB(pz)₃](C0)₂W[n²-$ CH(SMe)(PEt₃)]⁺ and [HB(pz)₃](CO)₂W[n²-CH(SMe)(4-NC₅H₄R)]⁺, R = Me, NMe₂, have broadened pyrazolyl protons indicating some fluxionality; (3) $[HB(pz)_{3}] (CO)_{2}W[\pi^{2}-CH(SMe)_{2}]$ and $[HB(pz)_{3}] (CO)_{2}W[\pi^{2}-CH(SMe)(PPh_{2})]$ are completely fluxional at room temperature (25°C). The importance of the electron-richness of the metal is supported by a correlation of the average **v**(CO) values of 2 and its adducts with the fluxionality of the HB(pz)₃ ligand. Carbene compound 2 and the PPh₃ adduct show relatively high average $v(C0)$ values at 2032 cm^{-1} and 1894 cm^{-1} , respectively. The intermediate complexes have lower average **v**(CO) values at 1887 cm^{-1} (4-picoline complex, 9), and 1883 cm^{-1} (4-

Figure 2. Proposed structure of $[HB(pz)₃](CO)₂W(≡CNR₂)$, R = Me (11) or Et (12). H and B atoms are omitted

Figure **3.** Temperature dependent **NMR** spectra of **[HB**(pz)**J{CO),W(hCNRJ, R** = Me **(11)** or Et **(12),** in CD_2Cl_2 solvent CD_3Cl_2 .

 NC_5H_4 NMe₂ compound, 10), 1882 cm⁻¹ (PEt₃ complex). The neutral SMe, 3, and PPh₂ compounds show the lowest average $v(C0)$ values at 1872 cm^{-1} and 1864 cm^{-1} , respectively.

Reactions of $[HB(pz)₃](C0)₂W[\pi²-CH(SMe)]⁺, 2, with Primary Amines$ and $NH₃$ Like secondary amines, a variety of primary amines react with 2 at room temperature to produce the corresponding aminocarbyne compounds in 25-35% yield (eq 10). The usual side products, $1 (0-5\%)^{23}$ and 3 (30-50%), are also formed. The aminocarbyne compounds 13-19 are so air-sensitive, that they

$$
2 + NH_2R \longrightarrow [HB(pz)_{3}](CO)_{2}W=C-M_{R}^{H} \longrightarrow [HB(pz)_{3}](CO)_{2}W_{C}^{H} \longrightarrow (10)
$$

13-17

R 13, Me **14, Et** 15, CH₂CH₂OH 16, $CH(Me)_2$ 17, $C(Me)_{3}$ 18, $4 - C_6H_4Me$ 19, H

were not isolated; however, they were characterized by the similarity of their IR and ¹H NMR spectra (Tables I and II) to those of 11 and **12.** The **v(CO)** frequencies of **13-19** are very close to those of **11** and **12.** However, IR spectra of **13-17** show an extra weak band in the **v(CN)** region (2090-2125 cm^{-1}) suggesting the presence of a CNR ligand. In the 1 ^H NMR spectra of 13-17, there are peaks for the aminocarbyne compound along with additional peaks for another type of R group and a metal hydride (\underline{ca} . δ -2.3 ppm). The additional peaks in the IR and ${}^{1}\textrm{H}$ NMR spectra of **13-17** indicate the carbyne complexes, [**HB**(**p**2)3](**C**0**)2W**(=**CNHR**), are in equilibrium with the isocyanide-hydride tautomer, $[HB(pz)_{3}] (CO)_{2}(H)W(CNR)$. In contrast, the absence of $v(CN)$ and a hydride resonance in the spectra of compounds **18** and **19** shows that these compounds exist only in the aminocarbyne structure. It thus appears that the electron-rich alkyl R groups in **13-17** promote formation of the isocyanide-hydride tautomer. The relative ratio of the aminocarbyne to isocyanide-hydride tautomer is obtained by integration of the peaks for the R groups. The ratio of the amount of the aminocarbyne to the hydride compound is dependent on the solvent but not on the bulkiness of R; the ratio is 4:1 in CDC1₃ for 13, 5:1 in CD2C12 for **14,** 4:1 in CD2CI2 for **15,** 4:1 in CD2CI2 for **16,** 4:1 in CD₂Cl₂ for 17, and 9:1 in CD₃NO₂ for 17. It is interesting that the

related Cp complex, $Cp(C0)_{2}$ Mo(H)(C=NMe) shows no evidence for the carbyne tautomer $Cp(C0)_{2}$ Mo=C-NHMe.²⁴ Perhaps, it is the preference of HB(pz)₃ complexes for 6, rather than 7 coordination, 19 or the greater

electron-donor ability of $HB(pz)$ ₃ which favors the aminocarbyne structure in compounds 13-19, as contrasted with the Cp system.

Compounds 13-19 slowly decompose in solution even under an N_2 atmosphere. During the decomposition of 17, the relative amounts of the aminocarbyne and hydride tautomers remain constant at 4:1 during a 52 h period, during which time 50% of 17 had decomposed. Thus, the equilibrium process between the tautomers is faster than the rate of decomposition.

To our knowledge, the tautomerism described here is the only example of an equilibrium between aminocarbyne and isocyanide-hydride isomers, although Pombeiro and Richards²⁵ has suggested $Mo(dppe)_{2}(CNR)(\equiv CNHR)^{+}$ as an intermediate in the protonation of $\text{Mo(dppe)}_{2}(\text{CNR})_{2}$ to give Mo(dppe)₂(CNR)₂(H)⁺.

The secondary aminocarbyne $[HB(pz)_{3}](C0)_{2}W(\equiv CNMe_{2})$, 11, does not undergo methyl transfer analogous to the above tautomerism to give $[HB(pz)₃](CO)$ ₂(Me)W(CNMe) even at 70°C for 5 h; there is no reaction.

Reaction of 2 with the hydrazine NH_2 MMe₂ (eq 11) produces 3 (28%), 11 (28%), and a third product which is not sufficiently stable

to be isolated. This reaction possibly involves NH₂NMe₂ addition to the carbene carbon and deprotonation with another mole of NH₂NMe₂ to form intermediate I. Migration of the proton from N-H to NMe₂ and fission of the N-N bond liberates free NHMe₂. The NHMe₂ could react with 2 to form the observed 3 and 11. According to eq 11, the third product would then have the chemical formula $[HB(pz)_{3}]$ (CO)₂- $W[CH(SMe)N]$, which is consistent with the IR and ${}^{1}H$ NMR spectra reported in the Experimental section. This same compound (10%) is also formed in the reaction of 2 and $N_{\rm B}$ which also gives 1 (10%) and 3 (10%). It is not unreasonable that N_3^- addition to the carbene carbon of 2 followed by loss of $N₂$ would also lead to the composition $[HB(pz)_3](CO)_{2}W[CH(SMe)N]$ for the third product; unfortunately, this compound could not be characterized further.

With other hydrazines, NH₂NH₂, NHMeNH₂, NHMeNHMe, only the base reaction (eq 2) occurs, yielding 1 (2-20%) and 3 (40%). A reaction related to (11) is that of asy-dimethylhydrazine with $(C0)_{\frac{1}{2}}$ Cr- $[C(0Me)(Me)]$ to give the likely intermediate $(C0)_{5}Cr[C(NHNNe_{2})(Me)],$ which rearranges to (CO)₅Cr(NCMe) with loss of HNMe₂.²⁶ Similarly, CpFe(CO) 3^+ reacts with NH₂NMe₂ or N₃⁻ to give an intermediate adduct, which rearranges to $CpFe(C0)_2(NCO)$.²⁷

EXPERIMENTAL SECTION

General Procedures Methods and instrumentation were the same as described in the previous paper. $⁴$ THF was distilled from Na-</sup> benzophenone under N₂. All amines, except Me₂NH, MeNH₂, EtNH₂, H₂NCH₂CH₂OH, and NH₃, were stored over KOH overnight and distilled from KOH. Ethanolamine (H₂NCH₂CH₂OH) was purified by vacuum distillation (5 mm, 40°C) before use. The complexes NaCpFe(CO)_{2} , 28 PPNCo(CO)₄,²⁹ [HB(pz)₃](CO)₂W(=CSMe),²⁰ and [HB(pz)₃](CO)₂W(=CSEt),²⁰ were prepared using the previously described procedures. Synthesis of the complex $\left[\left(HB(pz)_{3}\right](0)_{2}W\right[n^{2}-CH(SMe)]\right]CF_{3}SO_{3}$, 2, was described previously.^{3,4} NaC₁₀H_g,³⁰ NaSePh,³¹ NaCH(C0₂Me)₂,³² PPNSH,³³ and NHM eNHMe 27 were synthesized according to the literature references given. 4-Dimethylaminopyridine was recrystallized from CH₂Cl₂/hexane. All other chemicals were commerical products of the highest purity available and were used as received.

Reaction of ${[\text{HB(pz)}_3](\text{CO})_2W[\pi^2-\text{CH(SMe})]}$ CF₃SO₃, 2, with Bases The thiocarbene compound, 2, (47 mg, 0.071 mmol) in 10 mL of CH_2Cl_2 was treated with KOCMe₃ (49 mg, 0.44 mmol). The reaction mixture was allowed to stir for 3 h. The solution was diluted with 30 mL of hexane; slow evaporation under reduced pressure furnished a white precipitate (KO₃SCF₃). After the salt was removed by filtration through Celite, the solution was evaporated to dryness. The resulting residue was redissolved in a minimum amount of CH_2Cl_2 .

104

This solution was chromatographed on a 1 x 30 cm silica gel column. $[HB(pz)_{3}]$ (CO)₂W(=CSMe), 1, was eluted first with a 1:2 mixture of Ch_2Cl_2/h exane, yield 40%. Then, a yellow band was eluted with a 2:1 mixture of CH_2Cl_2/h exane. The yellow eluate was evaporated to dryness, and the resulting solid was recrystallized from CH_2Cl_2/h exane at -20°C to give air-stable, orange crystals of 3 (8 mg, 20%), whose spectra were identical to those of an authentic sample (see below).

In a procedure similar to the one above, the reactions of 2 (ça. 30 mg, 0.045 mmol) in 5-10 mL of solvent with 1-2 equivalents of various bases gave the following yields of 1 and 3, respectively, in parentheses: dry NaH (10, 40%), NaBH_{α} (10, 40%), NaOMe (10, 30%), NaOPh (15, 30%), PPNSH (10, 5%), NaSePh (5, 40%), LiCH₃ (10, 10%)/THF, NEt_3 (10, 30%), K₂CO₃ (10, 30%), NH₂NH₂ (2, 40%), NHMeNH₂ (20, 40%), and NHMeNHMe $(20, 40\%)$ /CH₂Cl₂.

Reaction of $\left[\text{HB(pz)}_{3}\right]$ (CO)₂W[n²-CH(SMe)]]CF₃SO₃, 2, with Reducing

Agents A THF solution of 2 (38 mg, 0.057 mmol) with $\texttt{NaC}_{10}\texttt{H}_{8}$ (1.5 mL, 0.039 M) was stirred at 0°C for 10 min. According to the IR spectrum of the reaction mixture, the products included 1 (10%) and 3 (40%).

In a procedure similar to the one above, 2 (ca. 30 mg, 0.045 mmol) was reacted in 5-10 mL of THF with 1-1.6 equivalents of various reducing agents to give 1 and 3 in yields noted in parentheses: $NaCpFe(C0)$ ₂ (10, 40%), PPNCo(CO)₄ (10, 30%).

 $[HB(pz)₃](C0)₂W[n²-CH(SMe)₂],$ 3 Dry NaH (42 mg, 1.8 mmol) was dissolved in 30 mL of THF, and **CH3SH** was slowly bubbled through the solution for 1 h. The solution was stirred for another 6 h, until H_2 production ceased. Then, THF was decanted from the white NaSMe precipitate, which was washed with THF and dried under vacuum. A THF solution (15 mL) containing $[{HB(pz)_{3}](C0)_{2}W[n^{2}-CH(SMe)]}CF_{3}SO_{3}$, 2, (60 rag, 0.091 mmol) and NaSMe (8 mg, 0.11 mmol) was allowed to stir for 15 min. Purification as for the KOCMe₃ reaction mixture described earlier afforded 1 (5%) and air-stable, orange crystals of 3 (46 mg, 90%). Anal. Calcd for C₁₄H₁₇BN₆0₂S₂W: C, 30.02; H, 3.06; N, 15.00; S, 11.45. Found: C, 29.81; H, 3.13; N, 14.83; S, 11.45. EIMS (18 eV): m/e 560(M⁺), 512(M⁺-HSMe), 504(M⁺-2C0), 473(M⁺-2C0-2Me-H). IR $(CH_2Cl_2): 1925 s, 1802 s cm^{-1}$.

 $[HB(pz)₃](CO)₂W[CH(SMe)(SEt)],$ 4 A 40 mL solution of THF containing dry NaH (1.24 g, 0.052 mol) and ethanethiol (8.1 mL, 0.11 mol) was stirred for 8 h, yielding a white precipitate (NaSEt). The THF was decanted from the precipitate, and the resulting solid was washed with THF and dried under vacuum. In a procedure similar to the one used for the synthesis of 3, a mixture of $[{HB(pz)}_3](CO)_{2}W[n^2 CH(SMe)$]}CF₃SO₃, 2, (66 mg, 0.10 mmol) and NaSEt (9 mg, 0.11 mmol) in 40 mL of THF was stirred for 30 min. Then, hexane (20 mL) was added to the reaction mixture, and the solution volume was reduced giving a white precipitate (Na0₃SCF₃). After the salt was removed by filtration through Celite, the solution was evaporated to dryness. The

106

residue was redissolved in a minimum amount of CH_2Cl_2 . This solution was chromatographed on a 1 x 30 cm silica gel column. $[HB(pz)_3](CO)_{2}W(=CSMe)$, 1, eluted first with a 1:2 mixture of CH₂Cl₂/hexane; yield 5%. Then, a yellow band which eluted with a 2:1 mixture of CH₂Cl₂/hexane was evaporated to give a solid. Air-stable, orange crystals of $[HB(pz)₃](CO)₂W[CH(SMe)(SEt)]$, 4, were obtained by recrystallizing the solid from CH_2Cl_2/h exane at -20°C (54 mg, 94%). The thioethyl compound, **4,** was always contaminated with some $[HB(pz)_3](CO)_{2}W[n^2-CH(SMe)_2]$, 3 (5%); neither recrystallization nor repeated chromatography separated the two completely. EIMS (18 ev): m/e 574(M^{+}), 518(M^{+} -2C0), 489(M^{+} -2C0-Et).

 $[HB(pz)₃](CO)₂W{CH(SMe)[SCH(Me)₂]}$, 5 A mixture of dry NaH (0.42 g, 0.018 mol) and $(CH_3)_2$ CHSH (4.7 mL, 0.050 mol) in 20 mL of THF was stirred for 8 h, yielding a white precipitate (NaSCH(Me) $_2$). The THF was decanted from the white solid, which was washed with THF and dried under vacuum. Analogous to the preparation of 3, a THF solution (5 mL). containing 2 (21 mg, 0.032 mmol) and NaSCH(CH₃)₂ (4 mg, 0.041 mmol) was stirred for 15 min. Purification as for **4** afforded 1 (5%) and air-stable, orange crystals of 5 (17 mg, 90%). The product, 5, was always contaminated with 3 (5%). EIMS(18 ev): m/e 588 $(M⁺)$, 532 $(M^+$ -2CO), 489 $(M^+$ -2CO-CH(Me)₂).

Reaction of $[HB(pz)_{3}]$ (CO)₂W[n²-CH(SMe)₂], 3, with CPh₃BF₄ Into a 4 mL CH₂Cl₂ solution of 3 (15 mg, 0.027 mmol) was added Ph₃CBF_{a} (12 mg, 0.036 mmol) at 0°C. After the solution was warmed to room

temperature, it was stirred for 30 min. The solvent was removed under vacuum, and the resulting residue was washed with diethyl ether and hexane. The thiomethylcarbene compound, 2, was obtained in essentially quantitative yield.

Reaction of $[HB(pz)₃](CO)₂W[n²-CH(SMe)₂], 3, with CF₃SO₃H A$ 0.4 mL CD₂Cl₂ solution of 3 (20 mg, 0.036 mmol) was placed in an NMR tube. Upon addition of CF₃SO₃H (3.2 pL, 0.036 mmol) to the solution, the color changed to violet. The IR and $¹$ H NMR spectra of the</sup> reaction mixture showed that the thiomethylcarbene compound, 2, was produced in 20% yield.

 ${[\text{HB(pz)}_3](C0)_2W[n^2-CH(Set)]\}CF_3SO_3$, 6 In a procedure similar to the one used for the preparation of 2, addition of CF_3SO_3H (10 μ L, 0.11 mmol) to a solution of $[HB(pz)_{3}]$ (CO)₂W(=CSEt) (60 mg, 0.11 mmol) in 6 mL of CH_2Cl_2 at 0°C produced an immediate color change from orange to the violet color of product 6. After the solvent was removed under vacuum, the resulting solid was washed several times with hexane and diethyl ether. Air-stable violet crystals of 6 were obtained by recrystallizing the solid from CH_2Cl_2/Et_20 at -20°C in essentially quantitative yield. Anal. Calcd. for $C_{15}H_{16}BF_3N_6O_5S_2W: C,$ 26.64; H, 2.39; N, 12.43. Found: C, 26.39; H, 2.52; N, 12.15. MS(FAB): m/e 527 (M+), 458 (M+-2C0-CH), 429 (M+-2C0-CH-Et).

 $[HB(pz)₃](CO)₂W{n²-CH(SMe)[CH(CO₂Me)₂]}$, 7 A solution of 2 (88 mg, 0.13 mmol) and NaCH(CO₂Me)₂ (1.0 mL, 0.13 M) in 5 mL of THF was allowed to stir for 15 min. The solvent was removed under vacuum.

108

and the residue was redissolved in a minimum amount of CH_2Cl_2 . This solution was chromatographed on a 1×30 cm column of silica gel with a 1:5 mixture of hexane/CH₂Cl₂; a single yellow band was collected. The eluate was concentrated, diluted with hexane, and cooled to -20°C. Air-stable, yellow crystals of 7 resulted (77 mg, 92%). Anal. Calcd. for $C_{18}H_{21}BN_60_6SW: C$, 33.56; H, 3.29; N, 13.05. Found: C, 33.64; H, 3.54; N, 12.98. EIMS (18 ev): m/e 644 (M+), 616 (M+-CO), 588 (M+-2C0), 573 (M+-2C0-Me).

 ${[\text{HB(pz)}_3](00)_2\text{W[n}^2-\text{CH(SMe)}(4-\text{NC}_5\text{H}_4\text{Me})]}$ CF₃S0₃, 9 A 0.4 mL CD_2C1_2 solution of 2 (13 mg, 0.020 mmol) was placed in an NMR tube. The solution was degassed and purged with N_2 . Upon addition of 4picoline (3.7 μ L, 0.038 mmol), the color of the solution changed to dark red to give complete conversion of 2 to 9 . After 1 H NMR spectra of the reaction mixture were taken, the solvent was removed under vacuum and the resulting residue was washed with ether. Air-stable maroon crystals of 9 were obtained by recrystallizing the solid from CH_2Cl_2/Et_2O at -20°C (12 mg, 80%). The product 9 decomposed in the presence of $NC₅H_AMe$ (1 equivalent) in $CD₂CI₂$ solution within 5 h to give 1 (10%). MS(FAB): m/e 606 (parent cation), 559 (parent cation-SMe), 513 (parent cation-4-picoline).

 ${\{\text{HB(pz)}_3\}}$ (CO)₂W[n²-CH(SMe)(4-NC₅H₄NMe₂)]}CF₃S0₃, 10 Into a 10 mL CH_2Cl_2 solution of 2 (43 mg, 0.065 mmol) was added 4dimethylaminopyridine (10 mg, 0.082 mmol). After the reaction mixture was stirred for 10 min, the solvent was removed under vacuum and the

resulting residue was washed with ether. Air-stable orange crystals of 10 were obtained by recrystallizing the solid from CH_2Cl_2/Et_2O at -20°C (46 mg, 90%). Anal. Calcd. for $C_{21}H_{24}BF_{3}N_{8}O_{5}S_{2}W$: C, 32.16; H, 3.08; N, 14.29. Found: C, 31.71; H, 3.33; N, 13.75. MS(FAB): m/e 635 (parent cation), 513 (parent cation-4-dimethyaminopyridine).

Reaction of $[{HB(pz)_{3}](CO)_{2}W[n^{2}-CH(SMe)(4-NC_{5}H_{4}NMe_{2})}]$ CF₃SO₃, 10, with NaOMe A 2 mL THF solution containing 10 (15 mg, 0.019 mmol) and NaOMe (4 mg, 0.074 mmol) was allowed to stir for 5 min. Complete conversion of 10 to 1 occurred as indicated by the IR spectrum of the reaction mixture.

 $[HB(pz)₃](CO)₂W(≡CNMe₂)$, 11 Into a 20 mL CH₂Cl₂ solution of 2 (94 mg, 0.14 mmol) was injected NHMe₂ vapor $(7 \text{ mL}, \text{ca. } 0.28 \text{ mmol})$ using a syringe. After the reaction mixture was stirred for 10 min, it was diluted with 20 mL of hexane; slow evaporation under reduced pressure furnished a white precipitate, $(NMe_2H_2)0_3SCF_3$. After the salt was removed by filtration through Celite, the solution was evaporated to dryness. The residue was redissolved in a minimum amount of CH_2Cl_2 and chromatographed on a 3 x 30 cm silica gel column. [HB(pz)₃](CO)₂W(=CNMe₂), 11, eluted first with a 5:2 mixture of hexane and CH_2Cl_2 . This fraction was evaporated to dryness, and the resulting residue was recrystallized from CH_2Cl_2/h exane, giving 11 (21 mg, 29%) as an air-stable, yellow solid. Anal. Calcd. for $C_{14}H_{16}BN_7O_2W: C$, 33.04; H, 3.17; N, 19.26. Found: C, 32.84; H, 3.20; N, 18.99. EIMS (21 ev): m/e 509 (M+), 481 (M+-CO), 453 (M+-2C0), 438

110

 $(M^+-2CO-Me)$, 397 $(M^+-2CO-CMMe₂)$. A second band (orange) was eluted with a 2:1 mixture of CH_2Cl_2/h exane. Evaporation of this fraction and recrystallization of the residue from CH_2Cl_2/h exane gave orange crystals of 3 (24 mg, 31%).

 $[HB(pz)₃](CO)₂W(\equiv CNEt₂), 12 The method used to prepare 11 was$ also used for this complex. A 20 mL CH_2Cl_2 solution containing 2 (91 mg, 0.14 mmol) and NHEt₂ (22 μ L, 0.21 mmol) was stirred for 10 min. The same workup as in the synthesis of 11 was employed to give airstable yellow crystals of 3 (24 mg, 31%) and 12 (23 mg, 31%). Anal. Calcd. for C₁₆H₂₀BN₇O₂W: C, 35.78; H, 3.75; N, 18.26. Found: C, 35.69; H, 3.79; N, 18.07. EIMS (21 ev): m/e 537 (M⁺), 509 (M⁺-CO), 481 $(M^+$ -2CO), 452 $(M^+$ -2CO-Et), 397 $(M^+$ -2CO-CNEt₂).

 $[HB(pz)_3](CO)_2$ W(=CNHMe), 13 Into a 5 mL CH₂C1₂ solution of 2 (35 mg, 0.053 mmol) was injected NH2Me vapor (12 mL, ça. 0.48 mmol). After the reaction had proceeded for 15 min, hexane (10 mL) was added. The solution volume was reduced giving a white precipitate, $(NH₃Me)CF₃SO₃$. The salt was removed by filtration through Celite, and the solution was evaporated to dryness to give a yellow solid. Compounds 1 (5%), 3 (30%), and $[HB(pz)_{3}]$ (CO)₂W(=CNHMe), 13 (25%), were identified from IR and 1_H NMR spectra of the reaction mixture. The aminocarbyne compound, 13, was not sufficiently stable to be isolated.

 $[HB(pz)_3](CO)_{2}W[\equiv CNHC(Me)_3], 17$ A 0.4 mL $CD_{2}CI_{2}$ solution of 2 (16 mg, 0.024 mmol) was placed in an NMR tube. The solution was degassed and purged with N_2 , and $NH_2C(Me)_3$ (2.6 μ L, 0.025 mmol) was

Ill

injected into the solution yielding a yellow solution. IR and $¹$ H NMR</sup> spectra of the reaction mixture showed the presence of 3 (40%) and 17 (35%). The aminocarbyne compound, 17, was not sufficiently stable to be isolated.

Reaction of $\{[HB(pz)_3](CO)_2W[\pi^2-CH(SMe)]\}CF_3SO_3$, 2, with

 NH_2 NMe₂ A 5 mL CH₂C1₂ solution containing 2 (46 mg, 0.070 mmol) and NH_2 NMe₂ (6.9 μ L, 0.091 mmol) was stirred for 5 min, yielding a greenish-yellow solution. It was diluted with 30 mL of hexane; slow evaporation under reduced pressure furnished a white precipitate NH_2 NMe₂*nCF₃SO₃H, n = 1 or 2, which was removed by filtration through Celite. The solution was evaporated to dryness, and the resulting residue was redissolved in a minimum amount of CH_2Cl_2 . This CH_2Cl_2 solution was chromatographed on a 1×30 cm silica gel column. $[HB(pz)_3](CO)_{2}$ W(=CNMe₂), 11, (10 mg, 28%) was eluted first with a 5:2 mixture of hexane/CH₂Cl₂. Then an orange band, 3, (11 mg, 28%) was eluted with a 2:1 mixture of CH_2Cl_2/h exane. A third product (30%) decomposed on the column and could not be isolated. In the reaction mixture, this product had bands in its IR spectrum at 1951 and 1852 cm^{-1} (hexane) and in the ¹H NMR (CD₂C1₂) spectrum at 6 7.78 (d, J=2.61), 7.72 (d, J=1.88), 6.27 (t, J=2.18), 4.72 (s, J_{WH}=4.60), and 2.27 (**S).**

REFERENCES

- 1. Yu, Y. S.; Angelici, R. J. Organometallics 1983, 2, 1018.
- 2. Yu, Y. S.; Angelici, R. J. Organometallics 1983, 2, 1583.
- 3. Kim, H. P.; Kim, S.; Jacobson, R. A.; Angelici, R. J. Organometallics 1984, 3, 1124.
- 4. Kim, H. P.; Kim, S.; Jacobson, R. A.; Angelici, R. J. preceding paper.
- 5. Clark, G. R.; Collins, T. J.; Marsden, K.; Roper, W. R. Organomet. Chem. 1983, 259, 215.
- 6. (a) McCormick, F. B.; Angelici, R. J.; Pickering, R. A.; Wagner, R. E.; Jacobson, R. A. Inorg. Chem. 1981, 4108.
	- (b) McCormick, F. B.; Angelici, R. J. Inorg. Chem. 1981, 20, **1118.**
- 7. Brown, F. J. Prog. Inorg. Chem. 1980, 27, 1.
- 8. (a) Abel, E. W.; Orrell, K. J; Bhargava, S. K. Prog. Inorg. Chem. 1984, 32, 1.
	- (b) Eekhof, J. H.; Hogeveen, H.; Kellogg, R. M.; Klei, E. J. Orqanometal. Chem. 1978, 161, 183.
	- (c) Cross, R.; Hunter, G.; Massey, R. C. J. Chem. Soc., Dalton Trans. 1976, 2015.
	- (d) Abel, E. W.; Booth, M; Orrell, K. J. Chem. Soc., Dalton Trans. 1979, 1994.
	- (e) Schenk, W. A.; Schwietzke, T. Organometallics 1983, 2, 1905.
- 9. Gibson, V. C.; Graimann, C. E.; Hare, P. M.; Green, M. L. H.; Bandy, J. A.; Grebenik, P. D.; Prout, K. <u>J. Chem. Soc., Dalton</u> Trans. 1985, 2025.
- 10. Headford, C. E. L.; Roper, W. R. J. Orqanometal. Chem. 1983, 244, C53.
- 11. The $[HB(pz)_{3}]$ (CO)₂W[CH(SMe)(SEt)] complex is prepared by a procedure similar to the one used (see Experimental) for 3. The 1 H NMR spectrum of the major isomer of $[HB(pz)_3](CO)_{2}$ W[CH(SMe)(SEt)] taken in CD₂Cl₂ solution shows peaks at 0 8.14 (H3 of pz), 7.65 (d, J=1.85 Hz, H5 of pz), 6.24 (t, J=2.22 Hz, H4 of pz), 4.79 (s, J_{wH} =4.91, CH), 2.66 (m, SCH₂), 2.42 (s, SMe), and 1.16 (t, J=7.57 Hz, Me).
- 12. (a) Casey, C. P.; Burkhardt, T. J. <u>J. Am. Chem. Soc.</u> 1973, 95, 5833.
	- (b) Fischer, E. O.; Reidmüller, S. Chem. Ber. 1976, 109, 3358.
	- (c) Fischer, E. 0.; Held, W.; Kreissl, F. R. Chem. Ber. 1977, 110, 3842.
- 13. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds", 4th ed.; WileyzNew York, 1981; p 207.
- 14. Ibid. pp. 208-10.
- 15. Tam, W.; Lin, G. Y.; Wong, W. K.; Kiel, W. A.; Wong, V. K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.
- 16. McCormick,-F. B.; Angel ici, R. J. Inorq. Chem. 1979, 1231.
- 17. (a) Collins, T. J.; Roper, W. R. J. Orqanomet. Chem. 1978, 159, 73.
	- (b) Pickering R. A.; Angelici, R. J. Inorq. Chem. 1981, 20, 2977.
- 18. Fischer, E. 0.; Lindner, T. L; Huttner, G.; Friedrich, P.; Kreissl, R. F.; Besenhard, J. 0. Chem. Ber. 1977, 3397.
- 19. Curtis, M. D.; Shiu, K. B. Inorq. Chem. 1985, 24, 1213.
- 20. Greaves, W. W.; Angelici, R. J. Inorq. Chem. 1981, 2983.
- -21. Fischer, E. 0.; Kreis, G.; Kreissl, F. R.; Kalbfus, W.; Winkler, E. J. Orqanomet. Chem. 1974, 65, C53.
- 22. Trofimenko, S. J. Am. Chem. Soc. 1969, 91, 3183.
- 23. The NH₂CH₂CH₂OH and NH₂-t-Bu reactions do not produce the thiocarbyne compound, 1.
- 24. Adams, R. A. Inorg. Chem. 1976, 15, 169.
- 25. Pombeiro, A. J. L.; Richards, R. L. Transition Met. Chem. 1980, 5, 55.
- 26. Fischer, E. 0.; Aumann, R. Chem. Ber. 1968, 101, 963.
- 27. Angelici, R. J.; Busetto, L. J. Am. Chem. Soc. 1969, 91, 3197.
- 28. Dombek, B. D.; Angelici, R. J. Inorq. Synth. 1977, *V_,* 100.
- 29. Ruff, J. K.; Schlientz, W. J. Inorq. Synth. 1974, 15, 84.
- 30. Closson, W. D.; Wriede, P.; Bank, S. J. Am. Chem. Soc. 1966, 88, 1581.
- 31. McCormick, F. B.; Angelici, R. J. Inorq. Chem. 1981, 20, 1111.
- 32. Hegedus, L. S.; Inoue, Y. J. Am. Chem. Soc. 1982, 104, 4917.

33. Gingerich, R. G. W.; Angelici, R. J. J. Am. Chem. Soc. 1979, 101, 5604.

SECTION IV. SYNTHESES AND STRUCTURES OF $[HB(pz)₃](CO)₂(CS)W-Au(PR₃)$. FIRST EXAMPLES OF A SEMIBRIOGING es LIGAND

÷,

 $\hat{\mathbf{c}}$

INTRODUCTION

The similarity of carbon monosulfide (CS) to CO has stimulated much interest in the synthesis and reactivity of CS complexes. 1 The CS group is found as a terminal ligand (e.g., (CO)₅W(CS),² CpFe(CO)₂(CS)⁺,³ CpMn(CO)₂(CS)⁴), as a carbon-bridging ligand (e.g., $Cp_2Fe_2(C0)_{3}(CS)$, 5 MnPt(y-CS)(CO)₂(PMePPh₂)₂Cp⁶), and as an end-to-end bridging ligand (e.g., $(dppe)₂(CO)WC=SW(C0)₅⁷$). In its complexes, CS is a better σ -donor and π -acceptor than CO^{1b} and generally binds more strongly to metals than does CO. The CO ligand participates in 3 types of metal-metal bridging in polynuclear systems: 8 carbon bridging (I), side-on bonding (II), and semibridging (III). Bonding

features of these bridging ligands were reviewed recently by Horwitz and Shriver.⁹ The side-on bonding CO (II) acts as a four-electron donor, providing two σ electrons to M and two π electrons to M'; both M'-O and M'-C interactions are relatively strong. The semibridging CO group (III) is characterized by different M-C distances (a < b) and unequal MCO angles $(a > B)$; the M'-C interaction is relatively weak. Extended Hückel molecular orbital calculations on $\text{CP}_2\text{M}_2(\text{CO})_4$ (M = Cr, Mo)¹⁰ suggest that the primary interaction between the more distant

second metal atom (M') and the semibridging carbonyl ligand is a donation of electron density from M' into the CO π^* orbitals. As a result, the semibridging CO ligand shows a lower stretching frequency than a comparable terminal CO group. 9 Unlike CO, CS has not been found or suggested to be a side-on or semibridging ligand in any metal complexes until now.

RESULTS AND DISCUSSION

Syntheses and Characterization of $[HB(pz)₃](CO)₂(CS)W-Au(PR₃)$

Terminal CS groups in electron-rich complexes form adducts at the S with Lewis acids, e.g., $(diphos)_{2}(CO)W(CSHgCl_{2})$, 11 and are also alkylated at the CS sulfur atom, e.g. $[HB(pz)_{3}]$ (CO)₂W(CSR).¹² On the other hand, certain electrophiles add to the metal center as in the reactions of $CpW(C0)_2(CS)^-$ with HgI₂, ClSnPh₃, and ClPbPh₃.¹³ We examined the reactions of $[HB(pz)_{3}] (CO)_{2}W(CS)^{-}$ with ClAu(PR₃) to determine whether the Au(PR₃) group adds to the S or the W atom.^{12b}

Reactions of $[HB(pz)_{3}]$ (CO)₂W(CS)⁻ and ClAu(PR₃) in CH₂Cl₂ at room temperature produce orange crystalline complexes $[HB(pz)_{3}](CO)_{2}(CS)W-$ Au(PR₃)(eq 1); the low-yield (20-30%) is presumably due to incomplete separation of the products since no other CO-containing products are observed during the reaction. In the products, 1 and 2, the Au($PR₃$) moiety has added to the W, as is found in other heterobimetallic Au

$$
S_{C} \n(R_{3}P)A u C1 + \n\begin{matrix} S_{C} & S_{C} \\ 0 & N[HB(pz)_{3}]^{T} & S_{C} \\ 0 & O \end{matrix}
$$
\n
$$
(PR_{3}) A u_{C} \n\begin{matrix} S \\ C \\ C_{0} \end{matrix}
$$
\n
$$
M[HB(pz)_{3}] + C1
$$
\n
$$
(1)
$$

 $1, R = Ph$ $2, R = Me$ compounds, e.g., Cp(C0)_3 W-Au(PPh₃),¹⁴ (CO)₄[P(OPh)₃]Mn-Au(PPh₃),¹⁵ $(C0)_{d}$ Co-Au(PPh₃),¹⁶ (n³-C₃H₅)(CO)₃Fe-Au(PPh₃).¹⁷

Compounds 1 and 2 are air-sensitive in solution, but relatively stable in the solid state. The IR spectrum of 2 (1920, 1830 cm^{-1}) shows lower CO stretching frequencies than that of 1 (1923, 1836 cm^{-1}), as expected for the more electron-donating PMe₃ group. The stretching frequency of the semibridging CO group is assigned to the lower band (1 (1836 cm^{-1}), 2 (1830 cm^{-1})), for reasons discussed in the Introduction. The stretching frequency of the semibridging CSgroup would also be expected to be lower than that of a comparable terminal CS group, e.g., $[HB(pz)_3](C0)_2W(CS)I$, v CS = 1243 cm⁻¹.¹³ Unfortunately, the **v(CS)** band of the semibridging CS group has not been identified because the $H B(pz)_{3}^-$ and PPh₃ groups also have strong absorptions between 1300 \sim 1000 cm^{-1} .¹⁸

The 13 C NMR spectrum of 1 at room temperature shows three peaks corresponding to two different CO groups and a CS. The resonance at 226.88 ppm, which is assigned to the terminal CO, has a chemical shift which is similar to that of CO groups in related compounds, e.g., 224.0 ppm for $[HB(pz)_3](CO)_{2}W(CS)I.^{13}$ The semibridging CO is then assigned to the band at 295.80 ppm. The semibridging CO is shifted downfield more than the terminal CO, as is also found in $Cp(C0)_{2}W(\mu C(toly1)=CH_2)Pt(PMe_3)_2$, 19 Cp(C0)₂W(μ -C(tolyl))Rh(PMe₃)(n⁵-C₉H₇).²⁰ The instability of the compound does not allow high temperature 13 C NMR studies, which might provide information about scrambling of the semibridging and terminal CO groups. ⁶ The resonance at 301.05 ppm

with J_{PC} = 34.18 Hz, which is assigned to the semibridging CS, has a similar chemical shift to that of the terminal CS in $[HB(pz)_3](CO)_{2}W(CS)I$ (300.0 ppm).¹³ The J_{pC} coupling to the PPh₃ phosphorus for the CS (J_{PC} = 34.18 Hz) but not for the CO (J_{PC} = 0 Hz) in 1 suggests that there is a stronger interaction between Au and CS than CO. Also in 2, $J_{\text{p}\text{r}}$ coupling to the PMe₃ phosphorus is greater for CS (J_{PC} = 29.60 Hz) than for CO (J_{PC} = 7.39 Hz). The larger J_{PC} (7.39 Hz) for the semibridging CO in the PMeg compound, as compared with the PPh₃ compound (J_{PC} = 0 Hz), suggests a stronger interaction of the semibridging CO with Au in 2 than in 1; these conclusions are supported by the structural results described below. In W-Pt dinuclear complexes with a semibridging CO interaction with the Pt, it has also been observed that $J_{\text{p}\text{r}}$ coupling constants are larger for shorter Pt-CO (semibridging) bonds, e.g., $Cp(C0)_{2}W(\mu-\eta^{1},\eta^{3}-$ CH(tolyl))Pt(PMe₃)₂ (Pt-CO = 2.27 Å, J_{PC} = 22 Hz)²¹ versus Cp(CO)₂W(u- $C(toly1) = CH_2)Pt(PMe_3)2(Pt-C0 = 2.54 \text{ Å}, J_{PC} = 11 \text{ Hz}.$ ¹⁹

The C-bridging CS ligand in $Cp_2Fe_2(C0)_3(CS)$, 22 $Cp_2Fe_2 (C0)_{2}(CS)_{2}$, 1f MnPt(u-CS)(C0)₂(PMePh₂)₂Cp, 6 and Cp(PMe₃)CoMnCp(C0)(u-CO)(μ -CS),²³ can be alkylated (R⁺) at the sulfur atom to give bridging thiocarbyne complexes, $M(\mu-\text{CSR})M'$. However, methylation of 1 with (Me₃0)PF₆ in CH₂Cl₂ at room temperature for 20 min cleaves the W-Au bond to give the terminal thiocarbyne $[HB(pz)_3](C0)_2W(\equiv CSMe)$, a compound which was prepared earlier via the reaction of $[HB(pz)_{3}](CO)_{2}W(CS)^{-}$ with Mel.^{12b}

Structure and Bonding Descriptions of $[HB(pz)_3](CO)_2(CS)W-$

Au(PR₃), 1 (R = Ph) and 2 (R = Me) Single-crystal X-ray

diffraction studies of 1 and 2 show these molecules to have essentially the same structures (Fig. 1 and 2) with a W-Au bond bridged by semibridging CS and CO ligands; the major difference between the structures of 1 and 2 is the $Au-C(1)$ distance, which is discussed later. Figure 3 contains bond distances and angles around the semibridging CS and CO and terminal CO ligands in complex 1. Selected bond distances and bond angles for 1 and 2 are given in Table I. Since the bond distances and angles are more precise for $1 (R =$ 3.1%) than 2 (R = **5.2%),** complex 1 will be discussed in greater detail. First we compare the structure of 1 with that of the closelyrelated Cp(CO)₃W-Au(PPh₃), ¹⁴ in which two of the CO groups are semibridging. The W-Au bond distance (2.8248(4) Â) in 1 is somewhat longer than those found in $Cp(C0)_{3}W-Au(PPh_{3})$ (2.698(3) Å) and Cp(C0)₂W-Au(PPh₃)(u-CH(tolyl)) (2.729(1) Å).²⁴ Several features of the structure of 1 are consistent with the presence of a semibridging CO group. The $W - C(2)$ bond distance $(1.954(9)$ Å) is shorter than $W - C(2)$ C(1) $(2.000(8)$ Å), and the C(2)-0(2) bond distance $(1.14(1)$ Å) appears to be shorter than $C(1) - O(1)$ $(1.16(1)$ Å). The W-C(2)-0(2) bond angle is $178.2(8)$ °, whereas the W-C(1)-O(1) bond angle (173.4 (7)°) deviates more from 180°; the W-C(1)-0(1) bond angle is close to those (172(4), 168(4)°) of the semibridging carbonyls in $Cp(C0)$ ₃W-Au(PPh₃). The Au-C(1)-0(1) bond angle, $114.8(6)$ °, is much smaller than that of W-C(1)-

123

Table I. Comparison of Selected Distances and Angles between $[HB(pz)₃](CO)₂(CS)W-Au(PPh₃)$, 1, and $[HB(pz)₃](CO)₂(CS)W Au(PMe₃)$, 2

(a) Distances $(A)^d$	

 a Estimated standard deviations are given in parentheses.

 $\ddot{}$

(b) Angles (°)b

 b Estimated standard deviations are given in parentheses.</sup>

 \sim \sim

Table II. Summary of Crystal Data and Intensity Data Collection for $[HB(pz)₃](CO)₂(CS)W-Au(PPh₃)$, 1, and $[HB(pz)₃](CO)₂(CS)W Au(PMe₃)$, 2

	$\mathbf{1}$	$\overline{2}$
Formula unit	C ₃₀ H ₂₅ AuBN ₆ O ₂ PSW	C ₁₅ H ₁₉ AuBN ₆ 0 ₂ PSW
Molecular weight	956.23	770.02
Space group	P2 ₁ /n	Pbca
a, λ	15.062(4)	16.956(3)
b, λ	18.103(3)	17.173(3)
c, λ	11.887(2)	15.053(2)
α , \circ	90	90
β , \circ	103.53(2)	90
Y_2 ^o	90	90
Volume, \AA^3	3151.2(12)	4383.4(14)
Z	4	8
P_{calc} g/cm ³	2.015	2.333
Crystal dimensions, cm	0.05x0.05x0.045	0.02x0.02x0.02
Diffractometer	DATEX	Syntex P21
Radiation, Å	0.70966	0.71069
Monochromator		oriented graphite crystal
Absorption coeff, cm^{-1}	85.12	122.09
(corr.append.)		

Table II (Continued)

 ${}^{a}R \equiv \Sigma | |F_{0}|-|F_{c}||/E|F_{0}|.$ $^{\text{b}}$ Rw = $[z_{\omega}(|F_{\text{o}}|-|F_{\text{c}}|)^2/z_{\omega}|F_{\text{o}}|^2]^{1/2}$, where $\omega=1/\sigma_{\text{F}}^2$. ${}^{\text{C}}S = [\Sigma \omega (|F_{0}|-|F_{c}|)^{2}/(N_{0}-N_{v})]^{1/2}$, where N_{0} and N_{v} being numbers .of observations and varied parameters, respectively.

^Isotropic parameter applied to Fc, based on P. Coppens and W. C. Hamilton (Acta Cryst. 1970, A26, 71) with a polarization factor for the case of a monochromator in the diffracted beam.

Figure 1. ORTEP plot of $[HB(pz)₃](C0)₂(CS)W-Au(PPh₃)$, 1

 $\ddot{}$

 \bullet

 \mathcal{E}

 \sim

 \sim

rigure 2. ORTEP plot of [HB(pz)₃](CO)₂(CS)W—Au(PMe₃), 2, view down the B—W bond

W

Figure 3. Bond distances and angles around the semibridging CS and CO and terminal CO ligands in the complex $[HB(pz)₃](CO)₂W-$ AuPPh₃, 1. The significant difference between 1 and 2 is in the Au-C(l) distance; this distance in complex 2 is shown in square brackets.

0(1) (173.4(7)°). The Au-C(1) bond distance is 2.720(8) \AA , which compares with the distances (2.51(5) Â and 2.79(5) Â) of the semibridging CO carbons to Au in $Cp(C0)_{3}W-Au(PPh_{3})$. The bond distances of the semibridging CO carbons to Au in $(n^3-C_3H_5)(CO)_3Fe-$ Au(PPh₃) are 2.595(7) Å and 2.569(7) Å.¹⁷ The Au-O(1) distance is 3.374(7) \AA , too long to be considered a side-on bonding $CO.⁹$ Thus, $C(1)-O(1)$ may be described as a semibridging CO group; the Au backbonds to the semibridging CO ligand by donating electron density into the π^* orbitals of CO, competing against π -back donation from the Watom. The geometry of the semibridging carbonyl ligand in 1 is similar to that in $(\pi^3-C_3H_5)(CO)_3$ Fe-Au(PPh₃),¹⁷ Cp(CO)₃W-Cu(PPh₃)₂,²⁵ and $Cp(C0)_{2}W(\mu-C(t01y1)=CH_{2})Pt(PMe_{3})_{2}$.¹⁹ Although the 14-electron gold(I) center has been considered a poor π -electron donor, 26 the much shorter Au-C(1) distance in the PMe₃ (2.55(3) Å) compound 2 as compared with the PPh₃ (2.720(8) Å) complex 1 strongly supports the idea that Au donates electron density into the CO π^* orbitals.

The CS ligand in 1 is also in a semibridging position; the Au-S distance is 3.054(2) Â, long for a side-on bonding CS. As in terminal and C-bridging CS complexes, CS behaves as if it were a better σ -donor and π -acceptor ligand than CO. Thus, the W-C(3) bond distance (1.911(7) Â) is shorter than both the W-C(l) (2.000(8) Â) and W-C(2) (1.954(9) Â) bond distances; it is also somewhat shorter than the W-C bond distance (1.94(2) Å) to the terminal CS in $(C0)_{4}(CNC_{6}H_{11})W(CS)$, 18 although this is a much less electron-rich system. The W-C(3)-S bond angle (165.9(5)°) deviates significantly from 180° and is smaller than
that of W-C(1)-0(1) (173.4(7) $^{\circ}$) but is similar to those of the semibridging carbonyls in Cp(CO)₃W-Au(PPh₃) (168(4)°, 172(4)°).^{10b} The M-C-0 angles^{10b} in other semibridging CO compounds⁸,9,19-21,25 range from 154° (MnPt(u-CS)(CO)₂(PMePh₂)₂Cp)⁶ to 177° (n³- C_3H_5)(CO)₃Fe-Au(PPh₃).¹⁷ The Au-C(3) distance (2.162(7) Å) is longer than the Au-C(sp) single bond distance (1.94(2) Â) in (ipropyl)NH₂AuC=CC₆H₅,²⁷ the Au-C(sp²) single bond distance (2.07(2) Å) in Ph₃PAuC₆F₅,²⁸ and the Au-C(sp³) single bond distance (2.12(3) Å) in $-Ph_3$ PAuMe.²⁹ Thus, the Au-C(3) interaction is weaker than a full bond. The Au-C(3)-S bond angle, 106.4(4)°, is much smaller than W- $C(3)$ -S (165.9(5) $^{\circ}$), as expected for a semibridging CS group. The Au-C(3) bond distance $(2.162(7)$ Å) is substantially shorter than the Au-C(1) bond distance (2.720(8) Å), which is consistent with the better π acceptor ability of CS over CO^{1b} It is interesting that the Au-CS bond distance is essentially the same in 1 and 2, whereas the Au-CO distance is considerably shorter in the PMe₃ complex 2. This suggests that the semibridging CS ligand is less capable of accepting the additional electron density in 2, whereas the Au-CO bond is considerably strengthened by it.

The $C(3)$ -S bond distance $(1.630(8)$ Å) is longer than those of other terminal CS ligands $(1.50 - 1.59 \text{ Å})$; 1e,18 this lengthening presumably results from the donation of electron density from the Au to the π^* orbitals of CS. The C(3)-S bond distance is even longer than those of the C-bridged CS ligands in $[CpFe(CS)(CO)]_2$ (avg. 1.590(8) \AA)³⁰ and Cp₂Fe₂(C0)₃CS (avg. 1.601(9) \AA).³¹

The W-Au-P bond angle $(154.6(1)°)$ deviates noticeably from the 180° found in most Au(I) complexes, $27-29$ and is substantially smaller than that found in $Cp(C0)_{3}$ W-AuPPh₃ (173.8(3)°). If one assumes Au to prefer linear coordination and one of its ligands is the phosphine, the second ligand should lie on an extension of the P-Au vector. It is interesting that this extension intersects the W-C(3) bond at about its midpoint; however,.it is not clear what significance this has for the bonding in the semibridging CS complexes. The Au atom adopts an approximately planar geometry; the W atom deviates (0.8 Â) from the least-squares plane, defined by Au, P , C(1), and C(3). The interplanar angle between W-C(l)-Au and W-C(3)-Au is 138° and 161° in 1 and 2, respectively. The $C(1)+O(1)$ bond vector lies in the W-C(1)-Au plane (within 0.03°) in 1, but is out of this plane slightly (2.04°) pointing toward the semibridging CS in 2. The $C(3)$ +S bond vector points away from the W-C(3)-Au plane toward the semibridging CO in both 1 (2.29°) and 2 (2.76°).

The geometry around the W atom can be viewed as a distorted pentagonal bipyramid; C(2) and N(3) are in the axial positions, and Au, $C(1)$, $C(3)$, $N(1)$, and $N(2)$ are in the equatorial plane. The angle C(2)-W-N(3) is 168.6° and 171.9° in 1 and 2, respectively. The angles L(axial)-W-L (equatorial) range from 79-112°, where L represents ligands including Au. This 7-coordination geometry, distinctly different from either capped octahedral or capped trigonal prismatic structure, has also been observed in other $[HB(pz)_3]$ complexes such as $[HB(pz)₃](CO)₂W[n²-CH(SMe)]⁺,³² [HB(pz)₃](CO)₂W[n²-CH(SMe)(PPh₂)],³³$

and $[HB(pz)_{3}]$ (CO)₂Mo[n²-COR] (R = Ph, Me),³⁴ in which the L(ax)-M-L(ax) angles range from 171.4° to 176.7° and the L-(ax)-M-L(eq) angles vary from 72.6° to 109.3°.

In conclusion, CS is a better semibridging ligand than CO as suggested by the fact that the CS instead of a second CO is involved in semibridging in 1 and 2. This conclusion is supported by the much shorter Au-C distance for Au-CS than Au-CO. The more favorable semibridging ability of the CS group appears to be due to its better π^* -acceptor ability as compared with CO, which allows it to interact more strongly with the π -donating Au atom.

EXPERIMENTAL SECTION

General Procedures All reactions were carried out under an N₂ atmosphere. Methylene chloride and hexane were dried over CaH₂ and distilled under N₂. Diethyl ether was distilled from Na-benzophenone under N₂. Reagent grade benzene was stored over type 4A molecular sieves. Products were crystallized using a layering technique, whereby the compound (30 mg) dissolved in CH_2Cl_2 (2 mL) was layered with hexane (10 mL) and allowed to sit at 0° C under a constant N₂ atmosphere. Infrared spectra were recorded on a Perkin-Elmer 681 spectrometer; the band positions were calibrated against gaseous CO. 1_H NMR spectra were obtained with a Nicolet NT-300 (300 MHz) spectrometer. Proton-decoupled 13 C NMR spectra were measured on the same instrument (75.46 MHz). To reduce 13 C NMR data collection times, $Cr(\text{acc})_3$ (ca. 0.1 M) was added to the solutions.³⁵ Chemical shifts of 13 C nuclei are reported in s units using CD₂Cl₂ (s = 53.80) as the internal standard. Electron impact mass spectra (EIMS) were obtained on a Finnigan 4000 spectrometer. Elemental microanalyses were performed by Galbraith Laboratories Inc., Knoxville, Tennessee.

Solutions of $[(n-Bu)_{4}N]$ $[[HB(pz)_{3}](CO)_{2}W(CS)]^{13}$ were prepared using previously described procedures. Ph₃PAuCl and Me₃PAuCl were purchased from Strem Chemical, Inc.

 $[HB(pz)₃](CO)₂(CS)W-AuPPh₃, 1$ A reaction solution containing $[(n-Bu)_{4}N]\{[HB(pz)_{3}](CO)_{2}W(CS)\}$ (0.22 mmol) and ClAuPPh₃ (109 mg, 0.22

137

mmol) in 20 mL of CH₂Cl₂ was stirred at room temperature for 15 min, yielding a red solution, which was evaporated to dryness under reduced pressure. The resulting oily residue was extracted with diethyl ether until the extract was colorless. The extract was filtered through Celite, and the filtrate was evaporated to give an orange solid; recrystallization from CH₂Cl₂/hexane at 0°C gave red crystals of 1 (63 mg, 30%). Microscopic crystals were found which were suitable for Xray analysis. Anal. Calcd for C₃₀H₂₅AuBN₆0₂PSW: C, 37.68; H, 2.64; N, 8.79. Found: C, 37.61; H. 2.63; N, 8.65. EIMS (19 eV): m/e 956(M⁺), 900 (M⁺-2CO). IR (CH₂C1₂): 1923(s), 1836(s) cm⁻¹. ¹H NMR (CD_2C1_2) : 8.20 (br, H3 of pz), 7.60 (m, H5 of pz and Ph), 6.16 (br, H4 of pz). 13 C NMR (CD₂C1₂): 301.05 (d, J_{PC} = 34.18 Hz, CS), 295.80 (semibridging CO), 226.88 (CO), 145.87 (C3 of pz), 135.54 (C5 of pz), 105.80 (C4 of pz), [134.38 (d, J_{PC} = 13.47 Hz), 131.86, 130.60, 129.88, 129.43 (d, J_{PC} = 8.54 Hz), Ph].

 $[HB(pz)₃](CO)₂(CS)W-AuPMe₃$, 2 In a procedure similar to that used for 1, (Me₃P)AuCl (160 mg, 0.52 mmol) was allowed to react with $[(n-Bu)_4]$ $[HB(pz)_3]$ $(C0)_2$ W (CS) } $(0.52$ mmol) in CH_2Cl_2 (50 mL) at room temperature for 15 min. The solution was diluted with 70 mL of ether; slow evaporation under reduced pressure furnished an orange precipitate. After the solution was decanted, the resulting orange solid was extracted with benzene. The benzene extract was filtered through Celite, and the solution was evaporated to dryness; recrystallization of the residue from CH_2Cl_2/h exane at 0°C gave red

crystals of 2 (80 mg, 20%) some of which were suitable for X-ray analysis. Anal. Calcd for $C_{15}H_{19}AuBN_{6}O_{2}PSW: C$, 23.40; H, 2.49; N, 10.91. Found: C, 22.83; H, 2.57; N, 10.30. EIMS (70 eV): m/e 770 (M^+) , 714 $(M^+$ -2 CO). IR (CH_2Cl_2) : 1920(s), 1830(s) cm⁻¹. ¹H NMR (CD_2Cl_2) : 8.17 (br, H3 of Pz), 7.68 (br, H5 of pz), 6.23 (br, H4 of pz), 1.78 (d, J_{PH} = 9.72 Hz, Me). ¹³C NMR (CD₂C1₂): 295.70 (d, J_{PC} = 29.60 Hz, CS), 293.20 (d, J_{PC} = 7.39 Hz, semibridging CO), 228.11 (CO), 145.81 (C3 of pz), 135.61 (C5 of pz), 105.91 (C4 of pz), 17.81 (d, J_{PC} = 34.61 Hz, Me).

X-ray Crystallography The general procedures for data collection and reduction have been published elsewhere.³⁶ Details of the data processing and relevant crystallographic data are given in Table II. Computer programs used in this study are summarized in reference 37.

The structures were determined using Patterson and electron density function calculations. Hydrogen atoms were included in the structure factor calculations at their calculated positions. The positional and anisotropic thermal parameters were refined by blockmatrix/full-matrix procedures.

The atomic scattering factors were those from reference 38 modified for the real and imaginary parts of anomalous dispersion.

REFERENCES

- 1. (a) Butler, I. S.; Fenster, A. E. J. Orqanometal. Chem. 1974, 66, 161. (b) Butler, I. S. Acc. Chem. Res. 1977, 1^, 359. (c) Collins, T. J.; Roper, W. R. J. Orqanometal. Chem. 1978, 159, 73. (d) Quick, M. H.; Angelici, R. J. Inorq. Chem. 1982, 21, 1674. (e) Bird, P. H.; Ismail, A. A.; Butler, I. S. Inorq. Chem. 1985, 24, 2911. (f) Angelici, R. J.; Dunker, J. W. Inorq. Chem. 1985, 24, 2209. (g) Broadhurst, P. V."Polyhedron 1985, 4, 1801.
- 2. Dombek, B. D.; Angelici, R. J. Inorq. Chem. 1976, 15, 1089.
- 3. Busetto, L.; Belluco, U.; Angelici, R. J. J. Orqanometal. Chem. 1969, 213.
- 4. Fenster, A. E.; Butler, I. S. Can. J. Chem. 1972, 50, 598.
- 5. (a) Quick, M. H.; Angelici, R. J. J. Orqanometal. Chem. 1978, 160, 231. (b) Wagner, R. E.; Jacobson, R. A.; Angelici, R. J.; Quick, M. H. J. Organometal. Chem. 1978, 148, C35.
- 6. Jeffery, J. C.; Razay, H.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1982, 1733.
- 7. Dombek, B. D.; Angelici, R. J. J. Am. Chem.Soc. 1974, 96, 7568.
- 8. (a) Cotton, F. A. Proq. Inorq. Chem. 1976, 21, 1. (b) Colton, R.; McCormick, M. J. Coord. Chem. Rev. 1980, 31, 1.
- 9. Horwitz, C.; Shriver, D. Adv. Orqanomet. Chem. 1984, 23, 219.
- 10. (a) Jemmis, E. D.; Pinhas, A. R.; Hoffmann, R. J. Am. Chem. Soc. 1980, **102,** 2576. (b) Morris-Sherwood, B. J.; Powell, C. B.; Hall, M. B. J. Am. Chem. Soc., 1984, 106, 5079.
- 11. Dombek, B. D.; Angel ici, R. J. Inorq. "Chem. 1976, 15, 2397.
- 12. (a) Dombek, B. D.; Angel ici, R. J. J. Am. Chem. Soc. 1975, 97, 1261. (b) Greaves, W. W.; Angelici, R. J. Inorg. Chem. 1981, 20, 2983.
- 13. Greaves, W. W.; Angel ici, R. J. J. Orqanometal. Chem. 1980, 191, 49.
- 14. Wilford, J. B.; Powell, H. M. J. Chem. Soc. A 1969, 8.
- 15. Mannan, Kh. A I. F. M. Acta Cryst. 1967, 23, 649.
- 16. Blundell, T. L.; Powell, H. M. J. Chem. Soc. A 1971, 1685.
- 17. Simon, F. E.; Lauher, J. W. Inorq. Chem. 1980, 19, 2338.
- 18. Woodard, S. S.; Jacobson, R. A.; Angelici, R. J. J. Organometal. Chem. 1976, 117, C75.
- 19. Barr, R. D.; Green, M.; Howard, J. A. K.; Marder, T. B.; Moore, I.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1983, 746.
- . Jeffery, J. C.; Sambale, C.; Schmidt, M. F.; Stone, F. G. A. Orqanometallies 1982, 1, 1597.
- 21. Jeffery, J. C.; Moore, I.; Razay, H.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1981, 1255.
- . Quick, M. H.; Angel ici, R. J. Inorq. Chem. 1981, 20, 1123.
- 23. Kolb, V. S.; Werner, H. Angew. Chem. 1982, 94, 207.
- 24. Carriedo, G. A.; Hodgson, D.; Howard, J. A. K.; Marsen, K.; Stone, F. G. A.; Went, M. J.; Woodward, P. J. Chem. Soc., Chem. Commun. 1982, 1006.
- 25. Carlton, L.; Lindsell, W. E.; McCullough, K. J.; Preston, P. N. J. Chem. Soc., Chem. Commun. 1983, 216.
- 26. (a) Graham, W. A. G. Inorq. Chem. 1968, 7, 315. (b) Johnson, B. F. G.; Davis, R. In "Comprehensive Inorganic Chemistry"; Bailar, J. C., Ed.; Pergamon Press: Oxford, 1973; Vol. 3, Chapter 3. (c) Browning, J.; Goggin, P. L.; Goodfellow, R. J.; Norton, M. G.; Rattray, A. J. M.; Taylor, B. F.; Mink, J. J. Chem. Soc., Dalton Trans. 1977, 2061.
- 27. Corfield, P. W. R.; Shearer, H. M. M. Acta Cryst. 1967, 23, 156.
- 28. Baker, R. W.; Pauling, P. Y. J. Chem. Soc., Dalton Trans. 1972, 2264.
- 29. Gavens, P. D.; Guy, J. J.; Mays, M. J.; Sheldrick, G. M. Acta Cryst. 1977, B33, 137.
- 30. Dunker, J. W.; Finer, J. S.; Clardy, J.; Angel ici, R. J. Organomet. Chem. 1976, 114, C49.
- 31. Beckman, D. E.; Jacobson, R. A. J. Orqanomet. Chem. 1979, 179, 187.
- 32. Kim, H. P.; Kim, S.; Jacobson, R. A.; Angelici, R. J. Orqanometallics 1984, 3, 1124.
- 33. Kim, H. P.; Kim, S.; Jacobson, R. A.; Angel ici, R. J. to be published.
- 34. Curtis, M. D.; Shiu, K-B.; Butler, W. M. Orqanometallics 1983, 2, 1475.
- 35. Gansow, 0. A.; Burke, A. R.; LaMar, G. N. J. Chem. Soc., Chem. Commun. **1972,** 456.
- 36. Lindsay, A. J.; Kim, S.; Jacobson, R. A.; Angel ici, R. J. Orqanometallics 1984, 3, 1523.
- 37. Indexings of the crystals were done using the program BLIND (Jacobson, R. A. J. Appl. Cryst. 1976, 9, 115). Structure factor calculations and least squares refinements were done using the program ALLS (Lapp, R. L.; Jacobson, R. A. U.S. Department of Energy Report IS-4708; Iowa State University: Ames, Iowa, 1979). Fourier series calculations were done using the program FOUR (Powell, D. R.; Jacobson, R. A. U.S. Department of Energy Report IS-4737; Iowa State University: Ames,Iowa, 1980), Patterson Marker analyses were done using the program ALCAMPS (Richardson, J. W. Jr. Ph.D. Dissertation, Iowa State University: Ames, Iowa, 1984), and for molecular drawing the program ORTEP (Johnson, C. K. U.S. Atomic Energy Commission Report QRNL-3794; Oak Ridge National Laboratory: Oak Ridge, Tenn., 1970) was used. An empirical absorption correction was carried out using diffractometer ϕ -scan data.
- 38. Cromer, D. T.; Waber, J. T. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp 71-79. Templeton, 0. H. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1962; Vol. Ill, Table 3.3.2**.C,** pp 215-216.

SUMMARY

Studies of $[HB(pz)_3](CO)_2W(\equiv CSMe)$ and $[HB(pz)_3](CO)_2W[n^2-CH(SMe)]$ demonstrate that they are highly reactive toward certain nucleophiles and electrophiles. CS is a better semibridging ligand than CO as suggested by the fact that the CS instead of a second CO is involved in semibridging in $[HB(pz)_{3}]$ (CO)₂(CS)W-Au(PR₃), R = Ph or Me. This conclusion is supported by the much shorter Au-C distance for Au-CS than Au-CO. The more favorable semibridging ability of the CS group appears to be due to its better π^* -acceptor ability as compared with CO, which allows it to interact more strongly with the electrondonating Au atom. Further evidence of the electron donor ability of the Au is seen in the shorter Au-C distance for the semibridging CO in the more electron rich PMe₃ complex as compared with the PPh₃ analogue.

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Robert J. Angel ici for his guidance, encouragement, and support during the course of this work. I wish to thank Dr. James H. Espenson, Dr. Robert E. McCarley, Dr. R. C. Larock, and Dr. Glenn L. Schrader for their service on my Ph.D. committee and their review of this dissertation. I would also like to express my gratitude to Dr. Robert A. Jacobson for his assistance on X-ray structural studies. I gratefully acknowledge Professor Taeyoung Lee, Professor Wonsick Lee, and Professor Myunghyun P. Suh for introducing me to chemical research and for encouraging me to pursue an advanced degree. It has been a distinct pleasure working with Dr. Yeung Yu, Dr. John Matachek, Ms. Nan Sauer, Dr. George Spies, Dr. Mohan Singh, and others in my research group. I would like to thank Missy Jacobson, Dr. and Mrs. Stanford, Dr. and Mrs. Malmquist, Mr. and Mrs. Potter, and my many other friends here in Ames for their fellowship and for making my stay more meaningful and joyful. I am very grateful for the constant love and support provided by my entire family. My special thanks go to Sangsoo Kim, my husband, for his understanding, sustained support, encouragement, and crystallographic expertise. I would like to also express my appreciation to Ms. Dawn Baksh for typing this manuscript.